高中数学新人教版选修2-2课时作业:第三章 数系的扩充与复数的引入3.1.1数系的扩充和复数的概念
- 格式:pdf
- 大小:185.87 KB
- 文档页数:7
第三章数系的扩充与复数的引入目录§3.1.1 数系的扩充与复数的概念(新授课)§3.1.2 复数的几何意义(新授课)§3.2.1 复数的代数形式的加减运算及其几何意义(新授课)§3.2.2 复数的代数形式的乘除运算(新授课)第三章数系的扩充与复数的引入小结与复习(复习课)选修2-2 第三章复数基础练习(一)选修2-2 第三章复数基础练习(一)答案选修2-2 第三章复数基础练习(二)选修2-2 第三章复数基础练习(二)答案第三章数系的扩充与复数的引入一、课程目标:本章学习的主要内容是数系的扩充与复数的概念,复数代数形式的四则运算。
复数的引入是中学阶段数系的又一次扩充,这不仅可以使学生对于数的概念有一个初步的、完整的认识,也为进一步学习数学打下了基础。
通过本章学习,要使学生在问题情景中了解数系扩充的过程以及引入复数的必要性,学习复数得一些基本知识,体会人类理性思维在数系扩充中的作用。
二、学习目标:(1)、在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。
(2)、理解复数的基本概念以及复数相等的充要条件。
(3)、了解复数的代数表示法及其几何意义。
(4)、能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。
三、本章知识结构:四、课时安排:本章教学时间约4课时,具体分配如下:3.1 数系的扩充与复数的概念约2课时3.2 复数代数形式的四则运算约2课时§3.1.1 数系的扩充与复数的概念(新授课)一、教学目标:知识与技能:了解数系的扩充过程,理解复数及其有关概念。
理解数系的扩充是与生活密切相关的,明白复数及其相关概念。
过程与方法:采取“阅读、质疑、探究”的过程,让学生体验数系的扩充过程。
情感、态度与价值观:让学生在“发现问题,解决问题”中增长技能,充分认识人类理性思维的能动性,使学生在掌握知识的同时增强战胜困难的信心和技能。
数系的扩充与复数的引入【知识要点】1、 虚数单位的引入及其性质:为了社会的发展,满足实际解题的需要,我们发现了很多问题在实数范围内还无法解决,但是把数集的范围进一步的扩充引入了复数(虚数),我们发现很多问题是可以解决; 如:在实数范围内求方程:2-+1=0,=1-4= -3<0x x ∆,故方程在实数范围内无解。
但是,当我们引入虚数,令2= -1i ,那么2= -3=3i ∆,12-1==22b x a ±±、, 故:一般地,我们记作虚数为=+(b 0)z a bi ≠为虚数,当=0a ,我们把=(b 0)z bi ≠叫做纯虚数。
2、 复数的概念:形如=+(a,)z a bi ∈b R 的数叫做复数,其中i 叫做虚数单位,a 叫做实部,b 叫做虚部,全体复数构成的集合叫做复数集,通常用C 表示。
==+(a ,bR )=0(b 0)0z a bi a a ⇔⎧⎪∈⇔⎧⎨≠⎨⎪⇔≠⎩⎩实数b 0复数纯虚数虚数非纯虚数 3、 复数的几何意义:=+(a,b )z a bi R ∈表示复数构成直角平面坐标系(复平面)中的实数点(a,b),那么|z 4、 共轭复数:12=+, =-z a bi z a bi ,形如这样的复数12 z z 、互为共轭复数,记作12= z z 。
5、 若12=+, =z a bi z c +di ,且12= z z ,则=,=a c b d 6、 复数的加减法:已知12=+, =z a bi z c +di ,则:122+=()+()=()+()1z z a +c b +d iz -z a -c b -d i7、 复数的乘除法:已知12=+, =z a bi z c +di ,则:12122222=()(c )=+()i()()(c-)+-===+(c )(c )(c-)++z z a +bi +di ac -bd ad +bc z a +bi a +bi di ac bd ac bd i z +di +di di c d c d【解题方法】【利用定义求解方程的未知数】1-1、 对于这样的题,一般会在一个方程里面出现虚部单位i ,然后出现一个方程等式等于0或者其他常数,我们则要利用若12=+, =z a bi z c +di ,且12= z z ,则=,=a c b d .若说x 为复数,则设=+x a bi 代入解题。
3.1.2复数的几何意义课时过关·能力提升基础巩固1实部为-2,虚部为1的复数所对应的点位于复平面的()A.第一象限B.第二象限C.第三象限D.第四象限答案B2复数z=+i2对应的点在复平面内的()A.第一象限B.实轴上C.虚轴上D.第四象限解析因为z=+i2=-1∈R,所以z对应的点在实轴上.故选B.答案B3复数z与它的模相等的充要条件是()A.z为纯虚数B.z是实数C.z是正实数D.z是非负实数解析因为z=|z|,所以z为实数,且z≥0.故选D.答案D4在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是() A.4+8i B.8+2iC.2+4iD.4+i解析由题意得点A(6,5),B(-2,3).由C为线段AB的中点,得C(2,4),所以点C对应的复数为2+4i.答案C5已知0<a<2,复数z=a+i(i是虚数单位),则|z|的取值范围是()A.(1,)B.(1,)C.(1,3)D.(1,5)解析|z|=.∵0<a<2,∴0<a2<4.∴1<,即1<|z|<.故选B.答案B6已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹为()A.一个圆B.线段C.两点D.两个圆解析∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0,∴|z|=3.故所求的轨迹为一个圆,故选A.答案A7复数z=-5-12i在复平面内对应的点到原点的距离为.解析因为|z|==13,所以z对应的点到原点的距离为13.答案138已知复数x2-6x+5+(x-2)i在复平面内的对应点在第三象限,则实数x的取值范围是.解析由已知得解得1<x<2.答案(1,2)9若复数z=(x-1)+(2x-1)i的模小于,求实数x的取值范围.分析根据复数的模的意义及题设中复数模的范围,建立关于实数x的不等式求解即可.解由题意,可得,。
技能演练基础强化1.设C={复数}、A={实数}、B={纯虚数},全集U=C,那么下列结论正确的是()A.A∪B=C B.∁U A=BC.A∩∁U B=∅D.B∪∁U B=C答案 D2.已知复数z=a+b i(a,b∈R),则z∈R的充要条件是() A.a+b i=a-b i B.a+b i=-a+b iC.ab=0 D.a=b=0答案 A3.若(x2-x)+(x-1)i是纯虚数,则实数x的值为()A.1或0 B.1C.0 D.以上都不对答案 C4.如果(x+y)i=x-1,那么实数x,y的值为()A.x=1,y=-1 B.x=0,y=-1C.x=1,y=0 D.x=0,y=0答案 A5.(3-1)i的实部是()A. 3 B.1C.-1 D.0答案 D6.若x,y∈R,且z=x+y i是虚数,则有()A.x=0,y∈R B.x≠0,y∈RC .x ∈R ,y =0D .x ∈R ,y ≠0答案 D7.下列命题:①ab =0,则a =0,或b =0; ②a 2+b 2=0,则a =0,且b =0;③z =a +b i(a ,b ∈R ),z 为纯虚数的充要条件是a =0; ④z =a +b i(a ,b ∈R ),若z >0,则a >0,b =0.其中正确命题的序号是__________.答案 ①④8.复数4-3a -a 2i 与复数a 2+4a i 相等,则实数a 的值为__________.解析 由4-3a -a 2i =a 2+4a i ,得⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4. 答案 -4能 力 提 升9.若log 2(m 2-3m -3)+ilog 2(m -2)为纯虚数,求实数m 的值. 解 由题意得⎩⎪⎨⎪⎧log 2(m 2-3m -3)=0,log 2(m -2)≠0,∴⎩⎪⎨⎪⎧m 2-3m -3=1,m -2>0,m -2≠1,解得m =4. 10.求适合方程xy -(x 2+y 2)i =2-5i 的实数x ,y 的值.解 由复数相等的充要条件得⎩⎪⎨⎪⎧ xy =2,x 2+y 2=5, 解得⎩⎪⎨⎪⎧ x =1,y =2,或⎩⎪⎨⎪⎧ x =-1,y =-2,或⎩⎪⎨⎪⎧ x =2,y =1或⎩⎪⎨⎪⎧x =-2,y =-1. 11.已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实根,求实数m 的值.解 设x =a 为方程的一个实数根.则有a 2+(1-2i)a +(3m -i)=0,即(a 2+a +3m )-(2a +1)i =0.∵a ,m ∈R ,由复数相等的充要条件,得⎩⎪⎨⎪⎧ a 2+a +3m =0,2a +1=0,解得⎩⎪⎨⎪⎧m =112,a =-12.故实数m 的值为112.12.已知z 1=sin2θ+icos θ,z 2=cos θ+i 3sin θ,若z 1=z 2,试求θ的值.解 ∵z 1=z 2,∴⎩⎪⎨⎪⎧ cos θ=sin2θ,cos θ=3sin θ,∴⎩⎨⎧ sin θ=12,cos θ=32,解得θ=2k π+π6(k ∈Z ).。
第三章 3.1 3.1.1一、选择题1.以2i -5的虚部为实部,以5i +2i 2的实部为虚部的新复数是( A ) A .2-2iB .2+iC .-5+5iD .5+5i解析 ∵2i -5的虚部为2,5i +2i 2的实部为-2,∴新复数为2-2i.故选A . 2.若2+a i =b -i ,其中a ,b ∈R ,i 是虚数单位,则a 2+b 2=( D ) A .0B .2C .52D .5解析 ∵2+a i =b -i ,a ,b ∈R ,∴b =2,a =-1,∴a 2+b 2=5.故选D . 3.已知复数cos θ+isin θ和sin θ+icos θ相等,则θ的值为( D ) A .π4B .π4或5π4C .2k π+π4(k ∈Z )D .k π+π4(k ∈Z )解析 由复数相等的充要条件知⎩⎪⎨⎪⎧cos θ=sin θ,sin θ=cos θ,得θ=k π+π4(k ∈Z ),故选D .4.复数4-3a -a 2i 与复数a 2+4a i 相等,则实数a 的值为( C ) A .1B .1或-4C .-4D .0或-4解析 由复数相等的充要条件得⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.5.已知a ,b ∈R ,则a =b 是(a -b )+(a +b )i 为纯虚数的( C ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析 (a -b )+(a +b )i 为纯虚数⇔⎩⎪⎨⎪⎧a +b ≠0,a -b =0⇔a =b ≠0,即a =b ≠0是该复数为纯虚数的充要条件,所以a =b 是该复数为纯虚数的必要不充分条件.6.已知M ={1,2,m 2-3m -1+(m 2-5m -6)i},N ={-1,3},M ∩N ={3},则实数m 的值为( B )A .-2B .-1C .1D .2解析 ∵M ∩N ={3},∴m 2-3m -1+(m 2-5m -6)i =3,∴⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 二、填空题7.复数1-i 的虚部的平方是__1__. 解析 1-i 的虚部为-1,虚部的平方为1.8.已知复数z =(m 2-m )+(m 2-1)i(m ∈R ),若z 是实数,则m 的值为__±1__;若z 是虚数,则m 的取值范围是__(-∞,-1)∪(-1,1)∪(1,+∞)__;若z 是纯虚数,则m 的值为__0__.解析 z =(m 2-m )+(m 2-1)i ,若z 是实数,则m 2-1=0,解得m =±1; 若z 是虚数,则m 2-1≠0,解得m ≠±1;若z 是纯虚数,则⎩⎪⎨⎪⎧m 2-m =0,m 2-1≠0,解得m =0.9.已知z 1=-4a +1+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R ,z 1>z 2,则a 的值为__0__.解析 由z 1>z 2,得⎩⎪⎨⎪⎧2a 2+3a =0,a 2+a =0,-4a +1>2a ,即⎩⎪⎨⎪⎧a =0或a =-32,a =0或a =-1,a <16,解得a =0.三、解答题10.若方程x 2+mx +2x i =-1-m i 有实根,求实数m 的值,并求出此实根.解析 设实根为x 0,代入方程,并由复数相等的充要条件,得⎩⎪⎨⎪⎧x 20+mx 0=-1,2x 0=-m ,消去m ,得x 0=±1,所以m =±2.因此,当m =-2时,原方程的实根为x =1; 当m =2时,原方程的实根为x =-1.11.实数m 分别为何值时,复数z =2m 2+m -3m +3+(m 2-3m -18)i 为(1)实数;(2)虚数;(3)纯虚数.解析 (1)若z 为实数,则⎩⎪⎨⎪⎧m 2-3m -18=0,m +3≠0,解得m =6.所以当m =6时,z 为实数.(2)若z 为虚数,则m 2-3m -18≠0,且m +3≠0, 所以当m ≠6且m ≠-3时,z 为虚数. (3)若z 为纯虚数,则⎩⎪⎨⎪⎧2m 2+m -3=0,m +3≠0,m 2-3m -18≠0,解得m =-32或m =1.所以当m =-32或m =1时,z 为纯虚数.12.如果log 2(m +n )-(m 2-3m )i<1,求自然数m ,n 的值. 解析 ∵log 2(m +n )-(m 2-3m )i<1,∴⎩⎪⎨⎪⎧ log 2(m +n )<1,m 2-3m =0,解得⎩⎪⎨⎪⎧0<m +n <2,m =0或m =3,∵m ,n 是自然数,∴m =0,n =1.由Ruize收集整理。
高中数学人教版选修2-2(理科)第三章数系的扩充与复数的引入 3.1数系的扩充和复数的概念(包括3.1.1数系的扩充和复数的概念,3.1.2复数的几何意义)同步练习(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)若复数满足方程,则()A .B .C .D .2. (2分) (2015高三上·唐山期末) 若(a﹣2i)i=b﹣i,其中a,b∈R,i是虚数单位,则复数a+bi=()A . 1+2iB . ﹣1+2iC . ﹣1﹣2iD . 1﹣2i3. (2分)化简为()A .B .C .D .4. (2分)(2018·杭州模拟) 记的最大值和最小值分別为和 .若平面向量满足则()A .B .C .D .5. (2分)若a、b∈R且(1+i)a+(1-i)b=2,则a、b的值分别为()A . a=1,b=-1B . a=-1,b=1C . a=1,b=1D . a=-1,b=-16. (2分)(2013·湖南理) 复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)复数,则实数a的值是()A .B .C .D .8. (2分) (2018高二下·济宁期中) 若为虚数单位,复数满足,则的最大值为()A .B .C .D .二、填空题 (共3题;共3分)9. (1分) (2019高二下·上海月考) 若复数z满足(i是虚数单位),则=________.10. (1分) (2019高二下·江门月考) i为虚数单位,设复数z1 , z2在复平面内对应的点关于原点对称,若z1=2﹣3i,则z2=________.11. (1分) (2015高二下·吕梁期中) z1=(m2+m+1)+(m2+m﹣4)i,m∈R.z2=3﹣2i.则m=1是z1=z2的________条件.三、解答题 (共3题;共35分)12. (10分) (2018高二下·大庆月考) 复数(1)实数为何值时该复数是实数;(2)实数为何值时该复数是纯虚数;13. (10分) (2019高二下·亳州月考) 已知复数(i为虚数单位).(1)当时,求复数的值;(2)若复数在复平面内对应的点位于第二象限,求的取值范围.14. (15分) (2019高二下·江门月考) 当为何实数时,复数,求:(1)实数;(2)虚数;(3)纯虚数?参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共3题;共3分)9-1、10-1、11-1、三、解答题 (共3题;共35分)12-1、12-2、13-1、答案:略13-2、答案:略14-1、14-2、14-3、。
高中数学第三章数系的扩充与复数的引入3.1.2 复数的几何意义课时提升作业2 新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章数系的扩充与复数的引入3.1.2 复数的几何意义课时提升作业2 新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章数系的扩充与复数的引入3.1.2 复数的几何意义课时提升作业2 新人教A 版选修1-2的全部内容。
复数的几何意义(25分钟60分)一、选择题(每小题5分,共25分)1.(2014·重庆高考)实部为—2,虚部为1的复数所对应的点位于复平面的( )A.第一象限B.第二象限C。
第三象限D。
第四象限【解题指南】根据复数的几何意义直接写出复数对应复平面内点的坐标进行判断.【解析】选B.实部为-2,虚部为1的复数所对应的复平面内的点为(-2,1),位于第二象限,故选B.【补偿训练】(2015·郑州高二检测)已知a∈R,且0〈a<1,i为虚数单位,则复数z=a+(a-1)i 在复平面内所对应的点位于( )A.第一象限B。
第二象限C.第三象限D.第四象限【解析】选D.因为0〈a〈1,所以a>0且a-1〈0,故复数z=a+(a-1)i在复平面内所对应的点(a,a-1)位于第四象限。
故选D.2。
(2015·大连高二检测)若复数z=(a2—3a+2)+(a2-4)i对应的点在虚轴上(不包含原点),则实数a的值等于()A.1B.2 C。
1或2 D.±2【解析】选A。
复数z对应的点的坐标是(a2—3a+2,a2—4),依题意应有解得a=1,即实数a的值等于1。
高中数学第三章数系的扩充与复数的引入3.1.1数系的扩充和复数的概念练习含解析新人教A 版选修121104[A 基础达标]1.以-3+i 的虚部为实部,以3i +i 2的实部为虚部的复数是( ) A .1-i B .1+i C .-3+3iD .3+3i解析:选A.-3+i 的虚部为1,3i +i 2=-1+3i ,其实部为-1,故所求复数为1-i. 2.若复数2-b i(b ∈R )的实部与虚部互为相反数,则b 的值为( ) A .-2 B.23 C .-23D .2解析:选D.复数2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),所以b =2. 3.若a ,b ∈R ,i 是虚数单位,a +2 017i =2-b i ,则a 2+b i =( ) A .2 017+2i B .2 017+4i C .2+2 017iD .4-2 017i解析:选D.因为a +2 017i =2-b i ,所以a =2,-b =2 017,即a =2,b =-2 017,所以a 2+b i =4-2 017i ,故选D.4.“a =-2”是“复数z =(a 2-4)+(a +1)i(a ∈R )为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.当a =-2时,复数z =(a 2-4)+(a +1)i =-i ,为纯虚数;当复数z =(a2-4)+(a +1)i 为纯虚数时,有⎩⎪⎨⎪⎧a 2-4=0,a +1≠0,解得a =±2,故选A.5.下列命题:①若z =a +b i ,则仅当a =0,b ≠0时z 为纯虚数; ②若z 21+z 22=0,则z 1=z 2=0;③若实数a 与a i 对应,则实数集与纯虚数集可建立一一对应关系. 其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选A.在①中未对z =a +b i 中a ,b 的取值加以限制,故①错误;在②中将虚数的平方与实数的平方等同,如若z 1=1,z 2=i ,则z 21+z 22=1-1=0,但z 1≠z 2≠0,故②错误;在③中忽视0·i =0,故③也是错误的.故选A.6.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________. 解析:z =m 2+m 2i -m 2-m i =(m 2-m )i ,所以m 2-m =0,所以m =0或1. 答案:0或17.若复数cos θ-isin θ与-sin θ+icos θ(θ∈R )相等,则θ=________. 解析:根据两个复数相等的充要条件,得cos θ=-sin θ,即tan θ=-1,所以θ=k π-π4(k ∈Z ).答案:k π-π4(k ∈Z )8.使不等式m 2-(m 2-3m )i<(m 2-4m +3)i +10成立的实数m 的取值集合是________.解析:由已知,得⎩⎪⎨⎪⎧m 2-3m =0m 2-4m +3=0m 2<10,解得m =3,所以所求的实数m 的取值集合是{3}.答案:{3}9.已知关于实数x ,y 的方程组⎩⎪⎨⎪⎧(2x -1)+i =y -(3-y )i ,①(2x +ay )-(4x -y +b )i =9-8i ②有实数解,求实数a ,b 的值. 解:对①,根据复数相等的充要条件,得⎩⎪⎨⎪⎧2x -1=y ,1=-(3-y ),解得⎩⎪⎨⎪⎧x =52,y =4.③把③代入②,得5+4a -(6+b )i =9-8i ,且a ,b ∈R ,所以⎩⎪⎨⎪⎧5+4a =9,6+b =8,解得⎩⎪⎨⎪⎧a =1,b =2.10.已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i(a ∈R ),试求实数a 取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数.解:(1)当z 为实数时,则a 2-5a -6=0,且a 2-7a +6a 2-1有意义,所以a =-1或a =6,且a ≠±1,所以当a =6时,z 为实数.(2)当z 为虚数时,则a 2-5a -6≠0,且a 2-7a +6a 2-1有意义,所以a ≠-1且a ≠6,且a ≠±1.所以当a ≠±1,且a ≠6时,z 为虚数,即当a ∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z 为虚数.(3)当z 为纯虚数时,则有a 2-5a -6≠0,且a 2-7a +6a 2-1=0.所以⎩⎪⎨⎪⎧a ≠-1,a ≠6.且a =6,所以不存在实数a 使z 为纯虚数.[B 能力提升]11.已知复数z =cos α+icos 2α(0<α<2π)的实部与虚部互为相反数,则α的取值集合为( )A.⎩⎨⎧⎭⎬⎫π,2π3,4π3B.⎩⎨⎧⎭⎬⎫π3,5π3C.⎩⎨⎧⎭⎬⎫π,π6,11π6 D.⎩⎨⎧⎭⎬⎫π,π3,5π3解析:选D.由条件,知cos α+cos 2α=0,所以2cos 2α+cos α-1=0,解得cos α=-1或12.又0<α<2π,所以α=π或π3或5π3,故选D.12.若关于x 的方程x 2-(6+i)x +5+i =0有一根为实数x 0,则x 0=________. 解析:因为x 2-(6+i)x +5+i =0的根为x =5+i 或1,所以x 0=1. 答案:113.已知集合M ={(a +3)+(b 2-1)i ,8},集合N ={3i ,(a 2-1)+(b +2)i},且M ∩NM ,M ∩N ≠∅,求整数a ,b 的值.解:若M ∩N ={3i},则(a +3)+(b 2-1)i =3i , 即a +3=0且b 2-1=3, 得a =-3,b =±2.当a =-3,b =-2时,M ={3i ,8},N ={3i ,8},M ∩N =M ,不合题意; 当a =-3,b =2时,M ={3i ,8},N ={3i ,8+4i},符合题意. 所以a =-3,b =2.若M ∩N ={8},则8=(a 2-1)+(b +2)i , 即a 2-1=8且b +2=0,得a =±3,b =-2. 当a =-3,b =-2时,不合题意;当a =3,b =-2时,M ={6+3i ,8},N ={3i ,8},符合题意. 所以a =3,b =-2.若M ∩N ={(a +3)+(b 2-1)i}={(a 2-1)+(b +2)i},则⎩⎪⎨⎪⎧a +3=a 2-1b 2-1=b +2,即⎩⎪⎨⎪⎧a 2-a -4=0b 2-b -3=0,此方程组无整数解.综上可得a =-3,b =2或a =3,b =-2.14.(选做题)已知复数z 1=-a 2+2a +a i ,z 2=2xy +(x -y )i ,其中a ,x ,y ∈R ,且z 1=z 2,求3x +y 的取值范围.解:由复数相等的充要条件,得⎩⎪⎨⎪⎧-a 2+2a =2xy a =x -y ,消去a ,得x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2.法一:令t =3x +y ,则y =-3x +t .分析知圆心(1,-1)到直线3x +y -t =0的距离d =|2-t |10≤2,解得2-25≤t ≤2+25,即3x +y 的取值范围是[2-25,2+25].法二:令⎩⎨⎧x -1=2cos αy +1=2sin α,得⎩⎨⎧x =2cos α+1y =2sin α-1(α∈R ),所以3x +y =2sin α+32cos α+2=25sin(α+φ)+2(其中tan φ=3), 于是3x +y 的取值范围是[2-25,2+25].。