第五章第3课时等比数列及其前n项和
- 格式:ppt
- 大小:293.00 KB
- 文档页数:8
第五章§3:等比数列及其前n 项和(与一轮复习课件对应的课时训练)满分100,训练时间45钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点A n (n ,a n )(n ∈N *)都在函数y =a x (a>0,a ≠1)的图象上,则a 3+a 7与a 5的大小关系是A .a 3+a 7>2a 5B .a 3+a 7<2a 5C .a 3+a 7=2a 5D .a 3+a 7与2a 5的大小与a 有关2.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q 等于A .3B .4C .5D .63.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于A .80B .30C .26D .164.已知数列{a n }是等差数列,数列{b n }是等比数列,其公比q ≠1,且b i >0(i =1,2,3,…),若a 2=b 2,a 8=b 8,则 A .a 5=b 5B .a 5>b 5C .a 5<b 5D .a 5>b 5或a 5<b 55.若“#”表示一种运算,其运算法则如下:(1)1#1=2;(2)(n +1)#1=2(n #1)+1,(n ∈N *). 则按照这种运算法则,n #1等于A .2n -1B .2nC .2nD .3·2n -1-1二、填空题:本大题共3小题,每小题8分,共24分.6.已知等比数列{a n }的公比为正数,且a 3a 9=4a 25,a 2=2,则{a n }的前5项和S 5等于______.7.已知实数列{a n }中,a 1=1,a 6=32,a n +2=a 2n +1a n,把数列{a n }的各项排成如图所示的三角形状,记A(m ,n)为第m 行从左起第n 个数,则A(12,5)=________. 8.为了观看2014年在韩国仁川举办的第17届亚运会,小王从2009年1月1日起, 每年到银行存入一万元定期储蓄,若年利率为p ,且保持不变,并约定每年到期存款均自动转为新一年的定期存款,若到2014年1月1日他将所有存款及利息全部取回,则可取回的钱的总数为______万元.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分,(1)小问8分,(2)小问10分)已知等比数列{a n }中,a 2=32,a 8=12,a n +1<a n .(1)求数列{a n }的通项公式;(2)设T n =log 2a 1+log 2a 2+…+log 2a n ,求T n 的最大值及相应的n 值.10.(本小题满分18分,(1)小问8分,(2)小问10分)已知数列{a n }满足,a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *. (1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:依题意a n =a n ,所以{a n }是等比数列,则a 3a 7=a 25,因为a ≠1, 所以a 3+a 7>2a 3a 7=2a 5. 答案:A2.解析:两式相减得,3a 3=a 4-a 3,a 4=4a 3,∴q =a 4a 3=4.答案:B3.解析:由题得S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n 成等比数列,设公比为q ,则q>0, ∵S 3n =2+2q +2q 2=14,∴q 2+q -6=0,∴q =2,∴S 4n -S 3n =2q 3=16,∴S 4n =30. 答案:B4.解析:由题意不妨设d>0,q>1.a n 是关于n 的一次函数形式,b n 是关于n 的指数函数形式,在同一坐标系中分别作出它们的图象(如图),故a 5>b 5. 答案:B5.解析:设n#1=a n ,则a 1=2,a n +1=2a n +1,即a n +1+1a n +1=2,所以{a n +1}为等比数列,首项为a 1+1=3,公比为2.所以a n +1=3·2n -1,所以a n =3·2n -1-1. 答案:D二、填空题:本大题共3小题,每小题8分,共24分.6.解析:因为a 3a 9=4a 25,所以q 2=4,又q>0,所以q =2,又a 2=2,所以a 1=1,S 5=1-251-2=31.答案:317.解析:由题意,第1行1个数,第2行3个数,第3行5个数,所以第12行第5个数应是a 126,又{a n }是首项为1,公比为2的等比数列,所以a 126=2125. 答案:21258.解析:从后向前考虑,因2014年不再存款,故可取回的钱的总数为:(1+p)+(1+p)2+…+(1+p)5=(1+p )[(1+p )5-1]p =1p[(1+p)6-(1+p)]答案:1p[(1+p)6-(1+p)]三、解答题:本大题共2小题,共36分.9.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)设公比为q ,则q 6=a 8a 2=164,a n +1<a n ,所以q =12.于是a 1=a 2q =64.所以,通项公式为a n =64·(12)n -1=27-n (n ∈N *).(2)设b n =log 2a n ,则b n =log 227-n =7-n.所以,数列{b n }是以首项为6,公差为-1的等差数列.T n =6n +n (n -1)2(-1)=-12n 2+132n =-12(n -132)2+1698.由n 是自然数,知n =6或n =7时,T n 最大,其最值为T 6=T 7=21.10.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)证明:b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1, 所以{b n }是以1为首项,-12为公比的等比数列.(2)解:由(1)知b n =a n +1-a n =(-12)n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+(-12)+…+(-12)n -2=1+1-(-12)n -11-(-12)=1+23[1-(-12)n -1]=53-23(-12)n -1, 当n =1时,53-23(-12)1-1=1=a 1.所以a n =53-23(-12)n -1(n ∈N *).。
《等比数列的前 n 项和》讲义一、等比数列的定义如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,通常用字母 q 表示(q≠0)。
例如:数列 2,4,8,16,32,就是一个公比为 2 的等比数列。
二、等比数列的通项公式等比数列的通项公式为:\(a_n = a_1 \times q^{n 1}\),其中\(a_1\)为首项,\(n\)为项数。
通项公式的作用在于,只要知道等比数列的首项和公比,就可以求出任意一项的值。
三、等比数列的前 n 项和公式推导我们先来考虑一个简单的等比数列:\(a_1\),\(a_1q\),\(a_1q^2\),\(a_1q^3\),,\(a_1q^{n 1}\)。
其前 n 项和为:\(S_n = a_1 + a_1q + a_1q^2 + a_1q^3 ++a_1q^{n 1}\)①两边同乘以公比 q ,得到:\(qS_n = a_1q + a_1q^2 + a_1q^3 ++ a_1q^{n 1} + a_1q^n\)②由②①,可得:\\begin{align}qS_n S_n&=(a_1q + a_1q^2 + a_1q^3 ++ a_1q^{n 1} +a_1q^n) (a_1 + a_1q + a_1q^2 + a_1q^3 ++ a_1q^{n 1})\\(q 1)S_n&=a_1q^n a_1\\S_n&=\frac{a_1(q^n 1)}{q 1} (q ≠ 1)\end{align}\当 q = 1 时,等比数列变为常数列,\(S_n = na_1\)。
四、等比数列前 n 项和公式的特点1、当q ≠ 1 时,等比数列的前 n 项和公式是一个关于 n 的指数型函数。
2、当 q = 1 时,前 n 项和就是首项乘以项数。
五、等比数列前 n 项和公式的应用例 1:已知等比数列\(\{a_n\}\)的首项\(a_1 = 2\),公比\(q = 3\),求前 5 项的和\(S_5\)。
《等比数列的前 n 项和》讲义在数学的奇妙世界里,等比数列是一个充满魅力和挑战的概念。
而其中,等比数列的前 n 项和更是具有重要的地位和广泛的应用。
接下来,让我们一起深入探索等比数列的前 n 项和的奥秘。
一、等比数列的定义首先,咱们得清楚啥是等比数列。
如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列。
这个常数就叫做等比数列的公比,通常用字母 q 表示(q≠0)。
比如说,数列 2,4,8,16,32 就是一个公比为 2 的等比数列。
二、等比数列的通项公式有了等比数列的定义,那怎么表示它的每一项呢?这就引出了等比数列的通项公式:an = a1×q^(n 1) ,其中 a1 是首项,n 是项数。
举个例子,对于等比数列 2,4,8,16,32 ,首项 a1 = 2 ,公比 q = 2 ,那么第 5 项 a5 = 2×2^(5 1) = 32 。
三、等比数列的前 n 项和公式接下来,就是咱们的重点——等比数列的前 n 项和公式。
当公比 q = 1 时,等比数列的前 n 项和 Sn = na1 。
当公比q ≠ 1 时,等比数列的前 n 项和 Sn = a1×(1 q^n) /(1 q) 。
这个公式是怎么来的呢?咱们来推导一下。
设等比数列的首项为 a1 ,公比为 q ,其前 n 项和为 Sn 。
Sn = a1 + a2 + a3 ++ an ①qSn = a2 + a3 + a4 ++ an + an+1 ②②①得:qSn Sn = an+1 a1Sn(q 1) = a1(q^n 1)所以,Sn = a1×(1 q^n) /(1 q) (q ≠ 1)四、公式的应用知道了公式,那得会用啊!咱们来看几个例子。
例 1:求等比数列 2,4,8,16,32 的前 5 项和。
这里首项 a1 = 2 ,公比 q = 2 ,项数 n = 5 。
因为q ≠ 1 ,所以使用公式 Sn = a1×(1 q^n) /(1 q)S5 = 2×(1 2^5) /(1 2) = 2×(1 32) /(-1) = 62例 2:一个等比数列的首项为 3 ,公比为 2 ,求它的前 10 项和。
第三节 等比数列及其前n 项和一、知识梳理1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n bn (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .基础检测1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )(4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列. 2.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4 D .±43.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19 D .-194.已知S n 是各项均为正数的等比数列{a n }的前n 项和,若a 2·a 4=16,S 3=7,则a 8=( ) A .32 B .64 C .128 D .2565.(2017·北京高考)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.6.设{a n }是公比为正数的等比数列,S n 为{a n }的前n 项和,若a 1=1,a 5=16,则数列{an }的前7项和为________.二、考点分析考点一 等比数列的基本运算1.已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2 D .2 2.2.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则q =________.考法(二) 求通项公式或特定项3.设S n 为等比数列{a n }的前n 项和,若a 1=1且3S 1,2S 2,S 3成等差数列,则a n =________. 4.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.考法(三) 求等比数列的前n 项和5.(2018·东北四市高考模拟)已知等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=________.6.(2017·全国卷Ⅰ节选)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n.✧方法总结1.等比数列基本运算中的2种常用数学思想(1)等比数列可以由首项a1和公比q确定,所有关于等比数列的计算和证明,都可围绕a1和q 进行.(2)对于等比数列问题,一般给出两个条件,就可以通过列方程(组)求出a1,q.如果再给出第三个条件就可以完成a1,n,q,a n,S n的“知三求二”问题.考点二等比数列的判定与证明例2.(2016·全国卷Ⅲ)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=3132,求λ.✧方法总结1.掌握等比数列的4种常用判定方法(1)等比数列的证明经常利用定义法和等比中项法,通项公式法、前n项和公式法经常在选择题、填空题中用来判断数列是否为等比数列.(2)证明一个数列{a n}不是等比数列,只需要说明前三项满足a22≠a1·a3,或者是存在一个正整数m,使得a2m+1≠a m·a m+2即可.变式2。
高三一轮复习 5.3 等比数列及其前n项和
【教学目标】
1。
理解等比数列的概念.
2。
掌握等比数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.
4。
了解等比数列与指数函数的关系。
【重点难点】
1。
教学重点:理解等比数列的概念并掌握等比数列的通项公式与前n项和公式。
2。
教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;
【教学策略与方法】
自主学习、小组讨论法、师生互动法
【教学过程】
可以“知三求二”,通过列方程(组)求关键量a1和q,问题可迎刃而解.
2.数形结合的思想;通项a n=a1q n-1可化为a n=错误!q n,因此a n 是关于n的函数,点(n,a n)是曲线y=错误!q x上一群孤立的点.3.分类讨论的思想;当q=1时,{a n}的前n项和S n=na1;当q≠1时,{a n}的前n项和S n=
a11-q n
1-q=a1-a n q
1-q。
等比数列
的前n项和公式涉及对公比q 的分类讨论,此处是常考点,也是易错点.
考点二:等比数列的判定与证明
(1)(2014·重庆高考)对任意。