等比数列及其前n项和(讲义)
- 格式:doc
- 大小:307.00 KB
- 文档页数:7
《等比数列的前 n 项和》讲义一、等比数列的定义如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,通常用字母 q 表示(q≠0)。
例如:数列 2,4,8,16,32,就是一个公比为 2 的等比数列。
二、等比数列的通项公式等比数列的通项公式为:\(a_n = a_1 \times q^{n 1}\),其中\(a_1\)为首项,\(n\)为项数。
通项公式的作用在于,只要知道等比数列的首项和公比,就可以求出任意一项的值。
三、等比数列的前 n 项和公式推导我们先来考虑一个简单的等比数列:\(a_1\),\(a_1q\),\(a_1q^2\),\(a_1q^3\),,\(a_1q^{n 1}\)。
其前 n 项和为:\(S_n = a_1 + a_1q + a_1q^2 + a_1q^3 ++a_1q^{n 1}\)①两边同乘以公比 q ,得到:\(qS_n = a_1q + a_1q^2 + a_1q^3 ++ a_1q^{n 1} + a_1q^n\)②由②①,可得:\\begin{align}qS_n S_n&=(a_1q + a_1q^2 + a_1q^3 ++ a_1q^{n 1} +a_1q^n) (a_1 + a_1q + a_1q^2 + a_1q^3 ++ a_1q^{n 1})\\(q 1)S_n&=a_1q^n a_1\\S_n&=\frac{a_1(q^n 1)}{q 1} (q ≠ 1)\end{align}\当 q = 1 时,等比数列变为常数列,\(S_n = na_1\)。
四、等比数列前 n 项和公式的特点1、当q ≠ 1 时,等比数列的前 n 项和公式是一个关于 n 的指数型函数。
2、当 q = 1 时,前 n 项和就是首项乘以项数。
五、等比数列前 n 项和公式的应用例 1:已知等比数列\(\{a_n\}\)的首项\(a_1 = 2\),公比\(q = 3\),求前 5 项的和\(S_5\)。
《等比数列的前 n 项和》讲义在数学的奇妙世界里,等比数列是一个充满魅力和挑战的概念。
而其中,等比数列的前 n 项和更是具有重要的地位和广泛的应用。
接下来,让我们一起深入探索等比数列的前 n 项和的奥秘。
一、等比数列的定义首先,咱们得清楚啥是等比数列。
如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列。
这个常数就叫做等比数列的公比,通常用字母 q 表示(q≠0)。
比如说,数列 2,4,8,16,32 就是一个公比为 2 的等比数列。
二、等比数列的通项公式有了等比数列的定义,那怎么表示它的每一项呢?这就引出了等比数列的通项公式:an = a1×q^(n 1) ,其中 a1 是首项,n 是项数。
举个例子,对于等比数列 2,4,8,16,32 ,首项 a1 = 2 ,公比 q = 2 ,那么第 5 项 a5 = 2×2^(5 1) = 32 。
三、等比数列的前 n 项和公式接下来,就是咱们的重点——等比数列的前 n 项和公式。
当公比 q = 1 时,等比数列的前 n 项和 Sn = na1 。
当公比q ≠ 1 时,等比数列的前 n 项和 Sn = a1×(1 q^n) /(1 q) 。
这个公式是怎么来的呢?咱们来推导一下。
设等比数列的首项为 a1 ,公比为 q ,其前 n 项和为 Sn 。
Sn = a1 + a2 + a3 ++ an ①qSn = a2 + a3 + a4 ++ an + an+1 ②②①得:qSn Sn = an+1 a1Sn(q 1) = a1(q^n 1)所以,Sn = a1×(1 q^n) /(1 q) (q ≠ 1)四、公式的应用知道了公式,那得会用啊!咱们来看几个例子。
例 1:求等比数列 2,4,8,16,32 的前 5 项和。
这里首项 a1 = 2 ,公比 q = 2 ,项数 n = 5 。
因为q ≠ 1 ,所以使用公式 Sn = a1×(1 q^n) /(1 q)S5 = 2×(1 2^5) /(1 2) = 2×(1 32) /(-1) = 62例 2:一个等比数列的首项为 3 ,公比为 2 ,求它的前 10 项和。
(经典)讲义:等比数列及其前n项和1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示.2.等比数列的通项公式设等比数列{a n}的首项为a1,公比为q,则它的通项a n=a1·q n-1.Sn=a1+a1q+a1q2+…+a1q n-1,同乘q得:qS n=a1q+a1q2+a1q3+…+a1q n,两式相减得(1-q)S n=a1-a1q n,∴S n=a1?1-q n?1-q(q≠1).7.1由a n+1=qa n,q≠0并不能立即断言{a n}为等比数列,还要验证a1≠0.7.2在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.8.等比数列的判断方法有:(1)定义法:若an+1an=q(q为非零常数)或anan-1=q(q为非零常数且n≥2且n∈N*),则{a n}是等比数列.(2)中项公式法:在数列{a n}中,a n≠0且a2n+1=a n·a n+2(n∈N*),则数列{a n}是等比数列.632++若已“知三求二”.1.,成公比为的公比为q,成等比数列理解例题1:在等比数列中, (1)已知13,2,a q ==求66,a S ;(2)已知1112.7,,,390n a q a =-=-=求n ;(3)已知141,64,a a =-=求q 和4S ;(4)已知3339,22a S ==求1,a q ;分析:在等比数列中有五个重要量1,,,,,n n a a q n S 只要已知任意三个,就可以求出其他两个.其中1a 和q 两个最重要的量,通常要先求出1a 和q . 解:(1)55613296a a q ==⋅=.66161S =(2)n a (3) (4) a S ⎧⎪⎪⎨⎪⎪⎩ (2 2∴ 当知识体验:已知等比数列的五个量1,,,,n n a a q n S 中的任意三个求其他两个时,要用等比数列的通项公式以其及前n 项和公式.理解例题分析: 解法一: 2m m S S ⎧=⎪⎪∴⎨⎪⎪⎩解法二: ②可利用等比数列中连续等段和成等比的性质即性质(1)求解.三、 例题(一) 题型分类全析1.等比数列前n 项和公式的基本运算例1:在等比数列的{}n a 中:31648,216,40,n a a a a S -=-==求公比q ,1a 及n . 思路直现:由已知两个条件,可建立关于1,a q 的方程组,分别解出1,a q 的值,代入n S 即可求出n .本题有关等比数列前n 项和的基本运算的考查.解:由已知可得 总结:在求数列的基本量问题时,把条件转化成基本量解方程是解决数列问题的基本方法.例2 已知数列{}n a 是等比数列,其前n 项和n S ,若3692S S S +=,求该数列的公比q .思路直现:由已知两个条件,可建立关于1,a q 的方程组,分别解出1,a q 的值,代入n S 即可求出n . 解: 若1q =,则1n S na =,36111369S S a a a ∴+=+=,91218S a =,此时3692S S S +≠∴96320q q q --=,即63210q q --=,即33 故2笔记不明确,转化为关于1,a q 的方程组求解. 本题考查了等比数列前n 项和公式的运用和分类讨论的思想.因不知q 的2例3思路直现:解: {n a2,S S ∴故4S 4,S ∴笔记:次k 项和,成等比数列来解决3,n n S S ,例4 首项为1的等比数列的和为思路: 解: q ∴=故8n =阅题笔记:利用等比数列奇、偶项数和的性质简单明了,运算量较低.增根. 本题考查了等比数列的性质. 注意S qS =偶奇这个性质是在项数为偶数这一前提下成立的. 建议:巧用特例,熟记等差等比数列奇偶项的一些性质.3.某些特殊数列的求和例5: (1)已知数列{}n a 的通项公式2n n a n =+,求该数列的前n 项和n S ; (2)已知数列{}n a 的通项公式23n n n a =+,求该数列的前n 项和n S . 解:(1)123n n S a a a a =++++ (2)笔记:例6思路:解:n S 笔记:的前n 考查数列的分组求和问题.例7:(2007天津)在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n N *∈皆成立.思路直现: (1)由递推关系式构造出数列n a n -,并证明其是等比数列. (2)利用分组求和法求出{}n a 的前n 项和. (3)考虑用作差法证明. (Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n N *∈.本小题考查等比数列的概念、等比数列的通项公式及前n 项和公式、不等式的证明 利用递推关所以数列{}n a n -是首项为111a -=,且公比为4的等比数列. (Ⅱ)解:由(Ⅰ)可知14n n a n --=, 14n n a n -∴=+.(Ⅲ)证明:对任意的n N *∈,1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n N *∈皆成立.笔记: 本题实际上第一步的证明起到一个提示的作用,即应从递推关系出发构造出n a n -的形式,并证明其为等比数列.例8: (3414n n n n a a b a --⎧=⎪⎪⎨⎪=⎪⎩(I )令n c (II 思路:(1) (II 阅题: 解答本题的方法,应整体考虑.系式证明数列成等比. 利用分组求和法求和 利用作差比较法证明不等式. 建议:学会解题的技巧,有时候题目的四、习题一、选择题1.(2008福建) 设{}n a 是公比为正数的等比数列,若151,16a a ==,则数列{}n a 前7项的和为A.63B.64C.127D.128 2.(2008浙江)已知{}n a 是等比数列,25124a a ==,,则12231n n a a a a a a ++++=A.16(14)n --B.16(12)n --C.32(14)3n --D.32(12)3n --3.(2008海南)设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a = A. 2B. 4C.152 D. 1724.(2007陕西) 各项均为正数的等比数列{}n a 的前n 项和为n S ,若32,14n n S S == 则4n S 等于A.80B.30C. 26D.16 5.(2006辽宁) 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于 A.122n +- B. 3n C. 2n D.31n -6.数列11111,2,3,4,24816的前n 项和为( )211n 111n -211n 11n 7.2n ++=B.112n --8.9 15n 712-2. C. 分析:{}n a 为等比数列,352a a q ∴=,311242q q ∴=⋅⇒=设1n n n b a a +=,{}n b ∴是首项为8,公比为14的等比数列.122311218[1()]324(14)1314n n n n na a a a a ab b b -+-+++=+++==--,3. C 分析: 414421(1)1215122a q S qa a q ---===-4. B 分析: {}n a 为等比数列,23243,,,n n n n n n n S S S S S S S ∴---成等比2322()()n n n nnS S S S S -=-即22222(14)(2)6n n n S S S -=-⇒=或24n S =-{}n a 各项均为正数,故2n n S S >,故26n S =,432,4,8,n n S S ∴-成等比,所以4316n n S S -=,430n S ∴=5. D 分析: 解:依题意,()f n 为首项为2,公比为328=的前4n +项和,根据等比数列的求和公式可得D6.C 分析:因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则2212112221(1)(1)(1)22n n n n n n n n n n n n a a a a a a a a a a a a +++++++++=++⇒+=++⇒+=2(12)01n a q q q ⇒+-=⇒=,即2n a =,所以2n S n =,故选择答案C 。
等比数列及其前n项和一.学习目标1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.体会等比数列与指数函数的关系.二.知识整合1.等比数列的有关概念等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q(q≠0)表示,符号表示为a n+1a n=q(n∈N∗)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时提醒:由a n+1=qa n,q≠0,并不能立即断定{a n}为等比数列,还要验证a1≠0.2.等比数列的有关公式通项公式a n=;推广:a n=a m⋅q n−m(m,n∈N∗)前n项和公式S n={ ,q=1,q≠1提醒:在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情况而导致解题失误.知识拓展:(1)当q≠0,q≠1时,S n=k−k⋅q n(k≠0)是{a n}成等比数列的充要条件,此时k=a11−q.(2)等比数列的单调性当{a 1>0,q >1 或{a 1<0,0<q <1时,等比数列{a n } 是递增数列. 当{a 1>0,0<q <1 或{a 1<0,q >1时,等比数列{a n } 是递减数列. 当q =1 时,等比数列{a n } 是常数列.当q =−1 时,等比数列{a n } 是摆动数列.三.典型例题考点一 等比数列基本量的运算例1(1) 已知等比数列{a n } 的前3项和为168,a 2−a 5=42 ,则a 6= ( )A. 14B. 12C. 6D. 3(2) 已知等比数列{a n } 的前n 项和为S n ,a 1=1 ,a 5=8a 2 ,若S n =31 ,则n = .方法感悟:等比数列基本量运算的解题策略(1)方程思想:等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1 ,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1 和q ,问题便可迎刃而解.(2)分类讨论思想:等比数列{a n } 的前n 项和公式涉及对公比q 的分类讨论,当q =1 时,{a n } 的前n 项和S n =na 1 ;当q ≠1 时,{a n } 的前n 项和S n =a 1(1−q n )1−q =a 1−a n q 1−q .考点二 等比数列的判定与证明例2已知数列{a n } 的首项a 1=12 ,且满足a n+1=a n3−2a n (n ∈N ∗) .(1) 证明:{1a n −1} 是等比数列,并求数列{a n } 的通项公式;(2) 记b n =n (1a n −1) ,求{b n } 的前n 项和S n .变式:已知各项都为正数的数列{a n } 满足a n+1+a n =3⋅2n ,a 1=1 .(1) 若b n =a n −2n ,求证:{b n } 是等比数列;(2) 求数列{a n } 的通项公式.方法感悟:判定等比数列的四种常用方法定义法 若a n+1a n =q (q 为非零常数,n ∈N ∗ )或a n a n−1=q (q为非零常数,且n ≥2 ,n ∈N ∗ ),则{a n } 是等比数列等比中项法 在数列{a n } 中,若a n ≠0 且a n+12=a n ⋅a n+2(n ∈N ∗) ,则{a n } 是等比数列通项公式法 若数列{a n } 的通项公式可以写成a n =c ⋅q n (c ,q均是不为0的常数,n ∈N ∗ )的形式,则{a n } 是等比数列前n 项和公式法 若数列{a n } 的前n 项和S n =k ⋅q n −k (k 为常数,且k ≠0 ,q ≠0 ,q ≠1 ),则{a n } 是等比数列五.达标练习1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =-3,ac =9B .b =3,ac =9C .b =-3,ac =-9D .b =3,ac =-92.已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6= ( )A .14B .12C .6D .33.记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -14.在数列{a n }中,满足a 1=2,a 2n =a n -1·a n +1(n ≥2,n ∈N *),S n 为{a n }的前n 项和.若a 6=64,则S 7的值为( )A .126B .256C .255D .2545. 已知正项等比数列{a n}的首项为1,且4a5,a3,2a4成等差数列,则{a n}的前6项和为( )A. 31B. 3132C. 6332D. 636. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10= 215−25,则k=( )A. 2B. 3C. 4D. 57. 已知等比数列{a n},其前n项和为S n.若a2=4,S3=14,则a3=.8. 已知等比数列{a n}的公比为−1,前n项和为S n,若{S n−1}也是等比数列,则a1=.9.设等比数列{a n}满足a1+a2=4,a3−a1=8. 记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3,则m=.10.已知数列{a n}的前n项和为S n,且满足2S n=−a n+n(n∈N∗). (1)证明:数列{a n−12}为等比数列;(2)求数列{a n−1}的前n项和T n.。
等比数列及其前n 项和教学讲义1.等比数列的有关概念 (1)等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达:a na n -1=q (n ≥2),q 为常数,q ≠0. (2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=ab .2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1;可推广为a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q. 3.等比数列的相关性质设数列{a n }是等比数列,S n 是其前n 项和.(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N *.特别地,若2s =p+r ,则a p a r =a 2s ,其中p ,s ,r ∈N *.(2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(3)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n (其中b ,p ,q 是非零常数)也是等比数列.(4)S m +n =S n +q n S m =S m +q m S n .(5)当q ≠-1或q =-1且k 为奇数时,S k ,S 2k -S k ,S 3k -S 2k ,…是等比数列,公比为q k .当q =-1且k 为偶数时,S k ,S 2k -S k ,S 3k -S 2k ,…不是等比数列.(6)若a 1·a 2·…·a n =T n ,则T n ,T 2n T n,T 3nT 2n,…成等比数列.(7)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .1.概念辨析(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)如果数列{a n }为等比数列,则数列{lg a n }是等差数列.( )(4)若数列{a n }的通项公式是a n =a n ,则其前n 项和为S n =a (1-a n)1-a.( )(5)若数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列. 答案 (1)× (2)× (3)× (4)× (5)× 2.小题热身(1)在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4 D .±4 答案 C解析 设等比数列{a n }的公比为q ,则q 4=a 7a 3=82=4,q 2=2,所以a 5=a 3q 2=2×2=4.(2)在等比数列{a n }中,已知a 1=-1,a 4=64,则公比q =________,S 4=________.答案 -4 51解析 q 3=a 4a 1=-64,q =-4,S 4=a 1-a 4q 1-q =-1-64×(-4)1-(-4)=51.(3)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和为________.答案 2n -1解析 因为数列{a n }是等比数列,所以a 1a 4=a 2a 3=8. 又a 1+a 4=9,所以a 1,a 4是方程x 2-9x +8=0的两个根. 又因为a 1<a 4,所以a 1=1,a 4=8,所以q 3=a 4a 1=8,q =2.所以数列{a n }的前n 项和S n =1·(1-2n )1-2=2n -1.(4)数列{a n }中a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =________.答案 6解析 因为a 1=2,a n +1=2a n ,所以a n ≠0,故a n +1a n=2.所以数列{a n }是公比为2的等比数列,因为S n =126,所以2(1-2n )1-2=126,所以2n =64,故n =6.题型 一 等比数列基本量的运算1.已知等比数列{a n }满足a 1+a 2=6,a 4+a 5=48,则数列{a n }前8项的和S 8=( )A .510B .126C .256D .512 答案 A解析 由a 1+a 2=6,a 4+a 5=48得⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 3+a 1q 4=48,得a 1=2,q =2,则数列{a n }前8项的和S 8=2(1-28)1-2=510.2.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解 (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n 3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1. 由S m =63得2m =64,解得m =6. 综上,m =6.等比数列的基本运算方法及数学思想(1)等比数列的基本运算方法①对于等比数列问题一般要给出两个条件,可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a n ,a 1,q ,n ,S n 的“知三求二”问题.如举例说明1.②对称设元法:一般地,连续奇数个项成等比数列,可设为…,xq ,x ,xq ,…;连续偶数个项成等比数列,可设为…,x q 3,xq ,xq ,xq 3,…(注意:此时公比q 2>0,并不适合所有情况),这样既可减少未知量的个数,也使得解方程较为方便.(2)基本量计算过程中涉及的数学思想方法 ①方程思想,即“知三求二”.②分类讨论思想,即分q =1和q ≠1两种情况,此处是常考易错点,一定要引起重视.③整体思想.应用等比数列前n 项和公式时,常把q n ,a 11-q 当成整体求解.1.等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( ) A.13 B .-13 C.19 D .-19 答案 B解析 当n ≥2时,a n =S n -S n -1=32n -1+r -32n -3-r =8·32n -3, 当n =1时,a 1=S 1=32-1+r =3+r , ∵数列是等比数列,∴当a 1满足a n =8·32n -3, 即8·32-3=3+r =83,即r =-13,故选B.2.(2018·滨海新区期中)已知递增等比数列{a n }的第三项、第五项、第七项的积为512,且这三项分别减去1,3,9后成等差数列.(1)求{a n }的首项和公比;(2)设S n =a 21+a 22+…+a 2n ,求S n .解 (1)根据等比数列的性质,可得a 3·a 5·a 7=a 35=512,解得a 5=8.设数列{a n }的公比为q ,则a 3=8q 2,a 7=8q 2, 由题设可得⎝ ⎛⎭⎪⎫8q 2-1+(8q 2-9)=2(8-3)=10,解得q 2=2或12.∵{a n }是递增数列,可得q >1,∴q 2=2,得q = 2. 因此a 5=a 1q 4=4a 1=8,解得a 1=2. (2)由(1)得{a n }的通项公式为 a n =a 1q n -1=2×(2)n -1=(2)n +1,∴a 2n =[(2)n +1]2=2n +1,可得{a 2n }是以4为首项,公比等于2的等比数列.因此S n =a 21+a 22+…+a 2n =4(1-2n )1-2=2n +2-4. 题型 二 等比数列的判断与证明(2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a nn . (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n .将n =1代入,得a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入,得a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由题设条件可得a n +1n +1=2a nn ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a nn =2n -1,所以a n =n ·2n -1.条件探究1 将举例说明条件改为“a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0,且a n >0”,求{a n }的通项公式.解 由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1.条件探究2 将举例说明条件改为“对任意的n ∈N *,有a n +S n =n .设b n =a n -1”,求证:数列{b n }是等比数列.证明 由a 1+S 1=1及a 1=S 1,得a 1=12.又由a n +S n =n 及a n +1+S n +1=n +1,得a n+1-a n+a n+1=1,∴2a n+1=a n+1. ∴2(a n+1-1)=a n-1,即2b n+1=b n.∴数列{b n}是以b1=a1-1=-12为首项,12为公比的等比数列.等比数列的判定方法(1)定义法:若a n+1a n=q(q为非零常数,n∈N*)或a na n-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列.见举例说明(2).(2)等比中项公式法:若数列{a n}中,a n≠0且a2n+1=a n·a n+2(n∈N*),则数列{a n}是等比数列.(3)通项公式法:若数列通项公式可写成a n=c·q n(c,q均是不为0的常数,n ∈N*),则{a n}是等比数列.(4)前n项和公式法:若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列.提醒:(1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.已知{a n},{b n}都是等比数列,那么()A.{a n+b n},{a n·b n}都一定是等比数列B.{a n+b n}一定是等比数列,但{a n·b n}不一定是等比数列C.{a n+b n}不一定是等比数列,但{a n·b n}一定是等比数列D.{a n+b n},{a n·b n}都不一定是等比数列答案 C解析a n=1,b n=(-1)n,则{a n},{b n}都是等比数列,但{a n+b n}不是等比数列;设等比数列{a n}的公比为p,等比数列{b n}的公比为q,则a n +1b n +1a n b n =a n +1a n ·b n +1b n=pq .所以数列{a n ·b n }一定是等比数列.2.(2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解 (1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n. 由S 5=3132得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.题型 三 等比数列前n 项和及性质的应用角度1等比数列通项的性质1.若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________.答案50解析因为等比数列{a n}中,a10·a11=a9·a12,所以由a10a11+a9a12=2e5,可解得a10·a11=e5.所以ln a1+ln a2+...+ln a20=ln (a1.a2.. (20)=ln (a10·a11)10=10ln (a10·a11)=10ln e5=50.角度2等比数列的前n项和的性质2.数列{a n}是等比数列,前2018项中的奇数项之积是1,偶数项之积是m,则数列{a n}的公比为()A.1009m B .m 1009 C .±1009m D .±m 1009答案 A解析 设数列{a n }的公比为q ,由已知得a 1a 3…a 2017=1,a 2a 4…a 2018=m ,则公比q 满足q 1009=m ,解得q =1009m .角度3 等差数列与等比数列的综合3.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q .由题设可得 ⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n . (2)由(1)知a 1=-2,q =-2, 所以S n +1=a 1+a 2+…+a n +a n +1 =a 1+qS n =-2-2S n .S n +2=a 1+a 2+a 3+…+a n +2=a 1+a 2+q 2S n=-2+4+4S n=2+4S n .所以S n +1+S n +2=(-2-2S n )+(2+4S n )=2S n ,所以S n +1,S n ,S n +2成等差数列.1.掌握运用等比数列性质解题的两个技巧(1)在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件.(2)利用性质可以得到一些新数列仍为等比数列或为等差数列,例如: ①若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列.②若公比不为1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .如巩固迁移3.2.牢记与等比数列前n 项和S n 相关的几个结论(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q .①若共有2n 项,则S 偶∶S 奇=q ;②若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q 1+q (q ≠1且q ≠-1),S 奇-a 1S 偶=q . (2)分段求和:S n +m =S n +q n S m ⇔q n=S n +m -S n S m(q 为公比).如举例说明3和巩固迁移1.1.(2018·青岛模拟)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且满足a 6,3a 4,-a 5成等差数列,则S 4S 2=( ) A .3 B .9 C .10 D .13答案 C解析 设等比数列{a n }的公比为q ,因为a 6,3a 4,-a 5成等差数列,所以6a 4=a 6-a 5,所以6a 4=a 4(q 2-q ). 由题意得a 4>0,q >0.所以q 2-q -6=0,解得q =3,所以S 4S 2=S 2+q 2S 2S 2=1+q 2=10. 2.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84答案 B解析 设{a n }的公比为q ,由a 1=3,a 1+a 3+a 5=21得1+q 2+q 4=7,解得q 2=2(负值舍去).∴a 3+a 5+a 7=a 1q 2+a 3q 2+a 5q 2=(a 1+a 3+a 5)q 2=21×2=42.故选B.3.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16答案 B解析 由题意知公比大于0,由等比数列的性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列.设S 2n =x ,则2,x -2,14-x 成等比数列. 由(x -2)2=2×(14-x ),解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列. 又∵S 3n =14,∴S 4n =14+2×23=30.故选B.。
第3讲 等比数列及其前n 项和1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的有关公式(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). [做一做]1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D.设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D. 2.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解析:因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4.答案:41.辨明三个易误点(1)由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不能为0,但q 可为正数,也可为负数.(2)由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.2.等比数列的三种判定方法(1)定义:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式:a n =cq n -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和的公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中根据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当q =1时,S n =na 1;当q ≠1时,S n=a 1(1-q n )1-q ;在判断等比数列单调性时,也必须对a 1与q 分类讨论.[做一做]3.在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选B.当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }是等差数列,不是等比数列,因此充分性不成立.当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立.故选B.4.若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. 解析:由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10, 得9a 1=10,得a 1=109.故S n =109(1-2n )1-2=109(2n -1).答案:109(2n -1)考点一__等比数列的基本运算(高频考点)________等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,难度适中,属中、低档题. 高考对等比数列的基本运算的考查常有以下三个命题角度:(1)求首项a 1、公比q 或项数n ;(2)求通项或特定项;(3)求前n 项和.(1)设等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 1=1,a 3=4,S k =63,则k =________.(2)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________. (3)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .[解析] (1)设等比数列{a n }的公比为q ,由已知a 1=1,a 3=4,得q 2=a 3a 1=4.又{a n }的各项均为正数,∴q =2.而S k =1-2k1-2=63,∴2k -1=63,解得k =6.(2)设数列{a n }的首项为a 1,公比为q , ∵a 25=a 10,2(a n +a n +2)=5a n +1,∴⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9, ①2(1+q 2)=5q , ② 由①得a 1=q , 由②知q =2或q =12,又数列{a n }为递增数列,∴a 1=q =2,从而a n =2n . [答案] (1)6 (2)2n(3)解:因为{a n }是首项为1,公差为2的等差数列, 所以a n =a 1+(n -1)d =2n -1, S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.所以a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q =23(4n -1).[规律方法] 等比数列运算的通法:与等差数列一样,求等比数列的基本量也常运用方程的思想和方法.从方程的观点看等比数列的通项公式a n =a 1·q n -1(a 1q ≠0)及前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1a 1(1-q n )1-q ,q ≠1中共有五个变量,已知其中的三个变量,可以通过构造方程或方程组求另外两个变量,在求公比q 时,要注意应用q ≠0验证求得的结果.1.(1)已知等比数列{a n }的前n 项和为S n ,且S 1,S 2+a 2,S 3成等差数列,则数列{a n }的公比为( )A .1B .2 C.12D .3(2)在公比大于1的等比数列{a n }中,a 3a 7=72,a 2+a 8=27,则a 12=( ) A .96 B .64 C .72D .48(3)已知数列{a n }满足2a n +1+a n =0,a 2=1,则数列{a n }的前10项和S 10为( ) A.43(210-1) B.43(210+1) C.43(2-10-1) D.43(2-10+1) 解析:(1)选D.因为S 1,S 2+a 2,S 3成等差数列,所以2(S 2+a 2)=S 1+S 3,2(a 1+a 2+a 2)=a 1+a 1+a 2+a 3,a 3=3a 2,q =3.(2)选A.由题意及等比数列的性质知a 3a 7=a 2a 8=72,又a 2+a 8=27, ∴a 2,a 8是方程x 2-27x +72=0的两个根,∴⎩⎪⎨⎪⎧a 2=24a 8=3或⎩⎪⎨⎪⎧a 2=3,a 8=24,又公比大于1,∴⎩⎪⎨⎪⎧a 2=3,a 8=24,∴q 6=8,即q 2=2,∴a 12=a 2q 10=3×25=96. (3)选C.∵2a n +1+a n =0,∴a n +1a n =-12. 又a 2=1,∴a 1=-2,∴{a n }是首项为-2,公比为q =-12的等比数列,∴S 10=a 1(1-q 10)1-q=-2(1-2-10)1+12=43(2-10-1),故选C. 考点二__等比数列的判定与证明________________已知数列{a n }的前n 项和S n 满足S n =2a n +(-1)n (n ∈N *).(1)求数列{a n }的前三项a 1,a 2,a 3;(2)求证:数列{a n +23(-1)n }为等比数列,并求出{a n }的通项公式.[解] (1)在S n =2a n +(-1)n (n ∈N *)中分别令n =1,2,3得: ⎩⎪⎨⎪⎧a 1=2a 1-1a 1+a 2=2a 2+1a 1+a 2+a 3=2a 3-1,解得⎩⎪⎨⎪⎧a 1=1a 2=0.a 3=2 (2)证明:由S n =2a n +(-1)n (n ∈N *),得 S n -1=2a n -1+(-1)n -1(n ≥2),两式相减得: a n =2a n -1-2(-1)n (n ≥2),a n =2a n -1-43(-1)n -23(-1)n =2a n -1+43(-1)n -1-23(-1)n (n ≥2),∴a n +23(-1)n =2[a n -1+23(-1)n -1](n ≥2).故数列{a n +23(-1)n }是以a 1-23=13为首项,公比为2的等比数列.∴a n +23(-1)n =13×2n -1,a n =13×2n -1-23(-1)n=2n -13-23(-1)n .在本例条件下,若数列{b n }满足b 1=a 1,b n =a n +a n +1.证明:{b n }是等比数列.证明:∵a n =2n -13-23(-1)n ,∴b n =a n +a n +1=2n -13-23(-1)n+2n 3-23(-1)n +1=2n -1.又b 1=a 1=1,∴b n +1b n =2,∴数列{b n }是等比数列. [规律方法] 等比数列的判定方法证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.2.已知数列{a n }满足:a 1=λ,a n +1=23a n +n -4,其中λ为实数,n 为正整数.对任意实数λ,证明:数列{a n }不是等比数列.证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝⎛⎭⎫23λ-32=λ⎝⎛⎭⎫49λ-4,故49λ2-4λ+9=49λ2-4λ,即9=0,矛盾,所以{a n }不是等比数列.考点三__等比数列的性质______________________(1)等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12n C.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n (2)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2(3)若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.[解析] (1)依题意,a n=2n -1,1a n a n +1=12n -1·2n =122n -1=12×14n -1,所以T n =12⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=23⎣⎡⎦⎤1-⎝⎛⎭⎫14n ,故选C.(2)由等比数列的性质,得a 3·a 2n -3=a 2n =22n,从而得a n =2n .log 2a 1+log 2a 2+…+log 2a 2n -1=log 2[(a 1a 2n -1)·(a 2a 2n -2)…(a n -1a n +1)a n ] =log 22n (2n-1)=n (2n -1).(3)设数列{a n }的公比为q ,由已知得S 4S 2=1+a 3+a 4a 1+a 2=5,1+q 2=5,所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17. [答案] (1)C (2)A (3)17[规律方法] (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.3.(1)在等比数列中,已知a 1a 38a 15=243,则a 39a 11的值为()A .3B .9C .27D .81(2)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =( ) A .11 B .12 C .14 D .16 (3)设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则 S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3解析:(1)选B.设数列{a n }的公比为q ,∵a 1a 38a 15=243,a 1a 15=a 28,∴a 8=3,∴a 39a 11=a 38q 3a 8·q3=a 28=9. (2)选C.设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.(3)选C.由等比数列的性质知S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.方法思想——分类讨论思想在求数列前n 项和中的应用如果有穷数列a 1,a 2,a 3,…,a m (m 为正整数)满足条件a 1=a m ,a 2=a m -1,…,a m =a 1,即a i=a m -i +1(i =1,2,…,m ),我们称其为“对称数列”.例如,数列1,2,3,4,3,2,1与数列a ,b ,c ,c ,b ,a 都是“对称数列”.(1)设{b n }是8项的“对称数列”,其中b 1,b 2,b 3,b 4是等差数列,且b 1=1,b 5=13.依次写出{b n }的每一项;(2)设{c n }是2m +1项的“对称数列”,其中c m +1,c m +2,…,c 2m +1是首项为a ,公比为q 的等比数列,求{c n }的各项和S n .[解] (1)设数列{b n }的公差为d ,b 4=b 1+3d =1+3d . 又因为b 4=b 5=13,解得d =4,所以数列{b n }为1,5,9,13,13,9,5,1.(2)S n =c 1+c 2+…+c 2m +1=2(c m +1+c m +2+…+c 2m +1)-c m +1 =2a (1+q +q 2+…+q m )-a =2a ·1-q m +11-q -a (q ≠1).而当q =1时,S n =(2m +1)a .∴S n =⎩⎪⎨⎪⎧(2m +1)a (q =1)2a ·1-q m +11-q -a (q ≠1).[名师点评] (1)本题是新定义型数列问题,在求等比数列{c n }前n 项和时用到了分类讨论思想.(2)分类讨论思想在数列中应用较多,常见的分类讨论有:①已知S n 与a n 的关系,要分n =1,n ≥2两种情况;②项数的奇、偶数讨论; ③等比数列的单调性的判断注意与a 1,q 的取值的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .解:(1)由题意知(a 1+d )2=a 1(a 1+3d ),即(a 1+2)2=a 1(a 1+6),解得a 1=2, 所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ·(n +1). 因为b n +1-b n =2(n +1),可得当n 为偶数时, T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n ) =4+8+12+…+2n =n2(4+2n )2=n (n +2)2,当n为奇数时,T n=T n-1+(-b n)=(n-1)(n+1)2-n(n+1)=-(n+1)22.所以T n=⎩⎨⎧-(n+1)22,n为奇数,n(n+2)2,n为偶数.1.已知等比数列{a n}的前三项依次为a-1,a+1,a+4,则a n=()A.4×⎝⎛⎭⎫32nB.4×⎝⎛⎭⎫23nC.4×⎝⎛⎭⎫32n-1D.4×⎝⎛⎭⎫23n-1解析:选C.(a+1)2=(a-1)(a+4)⇒a=5,a1=4,q=32,故a n=4×⎝⎛⎭⎫32n-1.2.已知等比数列{a n}的公比为正数,且a3a9=2a25,a2=2,则a1=()A.12 B.22C. 2 D.2解析:选C.由等比数列的性质得a3a9=a26=2a25,∵q>0,∴a6=2a5,q=a6a5=2,a1=a2q=2,故选C.3.已知数列{a n}满足1+log3a n=log3a n+1(n∈N*)且a2+a4+a6=9,则log13(a5+a7+a9)的值是() A.15B.-15C.5 D.-5解析:选D.由1+log3a n=log3a n+1(n∈N*),得a n+1=3a n,即数列{a n}是公比为3的等比数列.设等比数列{a n}的公比为q,又a2+a4+a6=9,则log13(a5+a7+a9)=log13[q3(a2+a4+a6)]=log13(33×9)=-5.4.等比数列{a n}的公比q>0,已知a2=1,a n+2+a n+1=6a n,则{a n}的前4项和S4=()A.-20 B.15C.152 D.203解析:选C.因为a n+2+a n+1=6a n,所以q2+q-6=0,即q=2或q=-3(舍去),所以a1=12.则S4=12(1-24)1-2=152.5.已知数列{a n},则有()A .若a 2n =4n ,n ∈N *,则{a n }为等比数列 B .若a n ·a n +2=a 2n +1,n ∈N *,则{a n }为等比数列C .若a m ·a n =2m +n ,m ,n ∈N *,则{a n }为等比数列 D .若a n ·a n +3=a n +1·a n +2,n ∈N *,则{a n }为等比数列解析:选C.若a 1=-2,a 2=4,a 3=8,满足a 2n =4n ,n ∈N *,但{a n }不是等比数列,故A 错;若a n =0,满足a n ·a n +2=a 2n +1,n ∈N *,但{a n }不是等比数列,故B 错;若a n =0,满足a n ·a n +3=a n +1·a n +2,n ∈N *,但{a n }不是等比数列,故D 错;若a m ·a n =2m +n,m ,n ∈N *,则有a m ·a n +1a m ·a n =a n +1a n =2m +n +12m +n =2,则{a n }是等比数列.6.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________. 解析:设等比数列{a n }的首项为a 1,公比为q ,则: 由a 2+a 4=20得a 1q (1+q 2)=20.① 由a 3+a 5=40得a 1q 2(1+q 2)=40.② 由①②解得q =2,a 1=2.故S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.答案:2 2n +1-27.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________. 解析:因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.答案:508.已知数列{a n }的前n 项和为S n ,满足a n +S n =1(n ∈N *),则通项公式a n =________. 解析:∵a n +S n =1,① ∴a 1=12,a n -1+S n -1=1,(n ≥2)②①-②可得a n -a n -1+a n =0,即得a n a n -1=12,∴数列{a n }是首项为12,公比为12的等比数列,则a n =12×⎝⎛⎭⎫12n -1=12n .答案:12n9.已知等差数列{a n }满足a 2=2,a 5=8.(1)求{a n }的通项公式;(2)各项均为正数的等比数列{b n }中,b 1=1,b 2+b 3=a 4,求{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧a 1+d =2a 1+4d =8,∴a 1=0,d =2.∴a n =a 1+(n -1)d =2n -2.(2)设等比数列{b n }的公比为q ,则由已知得q +q 2=a 4. ∵a 4=6,∴q =2或q =-3. ∵等比数列{b n }的各项均为正数, ∴q =2.∴{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n-1.10.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).1.已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 015=( ) A .92 014B .272 014C .92 015D .272 015解析:选D.由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,∴a n =3n ,b n =3n .又c n =b a n =33n ,∴c 2 015=33×2 015=272 015.2.等比数列{a n }共有奇数项,所有奇数项和S 奇=255,所有偶数项和S 偶=-126,末项是192,则首项a 1=( )A .1B .2C .3D .4解析:选C.设等比数列{a n }共有2k +1(k ∈N *)项,则a 2k +1=192,则S 奇=a 1+a 3+…+a 2k -1+a 2k +1=1q(a 2+a 4+…+a 2k )+a 2k +1=1q S 偶+a 2k +1=-126q +192=255,解得q =-2,而S 奇=a 1-a 2k +1q 21-q 2=a 1-192×(-2)21-(-2)2=255,解得a 1=3,故选C.3.数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a n +m a m=a n ,则a 3=________;{a n }的前n 项和S n =________. 解析:∵a n +m a m=a n , ∴a n +m =a n ·a m ,∴a 3=a 1+2=a 1·a 2=a 1·a 1·a 1=23=8;令m =1,则有a n +1=a n ·a 1=2a n ,∴数列{a n }是首项为a 1=2,公比q =2的等比数列,∴S n =2(1-2n )1-2=2n +1-2. 答案:8 2n +1-24.设f (x )是定义在R 上恒不为零的函数,对任意x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n=f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是________.解析:由条件得:f (n )·f (1)=f (n +1),即a n +1=a n ·12,所以数列{a n }是首项与公比均为12的等比数列,求和得S n =1-⎝⎛⎭⎫12n ,所以12≤S n <1. 答案:⎣⎡⎭⎫12,15.已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列. (1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n +2个数成等差数列,记插入的这3n 个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)因为a 4+S 4,a 5+S 5,a 6+S 6成等差数列,所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5,即2a 6-3a 5+a 4=0,所以2q 2-3q +1=0,因为q ≠1,所以q =12, 所以等比数列{a n }的通项公式为a n =12n . (2)b n =a n +a n +12·3n =34⎝⎛⎭⎫32n, T n =34×32-⎝⎛⎭⎫32n +11-32=94⎣⎡⎦⎤⎝⎛⎭⎫32n -1. 6.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的各项均为正数,公比是q ,且满足:a 1=3,b 1=1,b 2+S 2=12,S 2=b 2q .(1)求a n 与b n ;(2)设c n =3b n -λ·2a n 3,若数列{c n }是递增数列,求λ的取值范围.解:(1)由已知可得⎩⎪⎨⎪⎧q +3+a 2=12,3+a 2=q 2,所以q 2+q -12=0, 解得q =3或q =-4(舍去),从而a 2=6,所以a n =3n ,b n =3n -1.(2)由(1)知,c n =3b n -λ·2a n 3=3n -λ·2n .由题意,c n +1>c n 任意的n ∈N *恒成立,即3n +1-λ·2n +1>3n -λ·2n 恒成立, 亦即λ·2n <2·3n 恒成立,即λ<2·⎝⎛⎭⎫32n恒成立. 由于函数y =⎝⎛⎭⎫32n 是增函数,所以⎣⎡⎦⎤2·⎝⎛⎭⎫32nmin=2×32=3, 故λ<3,即λ的取值范围为(-∞,3).。
等比数列的前n项和(第一课时)(选自人教版高中数学第一册(上)第三章第五节)一、教材分析1.从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.2.从学生认知角度看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.3.学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.4. 重点、难点教学重点:公式的推导、公式的特点和公式的运用.教学难点:公式的推导方法和公式的灵活运用.公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.二、目标分析知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.情感与态度价值观:通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.三、过程分析学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:1.创设情境,提出问题在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点. 此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数 .带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.2.师生互动,探究问题在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢? 探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探讨2: 如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有 ,记为(2)式.比较(1)(2)两式,你有什么发现? 设计意图:留出时间让学生充分地比较,等比数列前n 项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到: .老师指出:这就是错位⋅⋅⋅⋅⋅⋅23631+2+2+2++2⋅⋅⋅⋅⋅⋅23631+2+2+2++2⋅⋅⋅236364设s =1+2+2+2++2s ⋅⋅⋅236364642=2+2+2++2+2646421s =-相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.3.类比联想,解决问题这时我再顺势引导学生将结论一般化, 这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.对不对?这里的q 能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时s n =?(这里引导学生对q 进行分类讨论,得出公式,同时为后面的例题教学打下基础.)再次追问:结合等比数列的通项公式a n =a 1q n-1,如何把s n 用a 1、a n 、q 表示出来?(引导学生得出公式的另一形式)设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.4.讨论交流,延伸拓展在此基础上,我提出:探究等比数列前n 项和公式,还有其它方法吗?我们知道, 那么我们能否利用这个关系而求出s n 呢?根据等比数列的定义又有234n 123n-1a a a a =====q a a a a ,能否联想到等比定理从而求出s n 呢? 设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围. 以上两种方法都可以化归到11-+=n n qs a s , 这其实就是关于n s 的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.5.变式训练,深化认识公比为,q n 如何求前n 项和s ?2n-1n-2n 11111111s =a +a q+a q ++a q =a +q(a +a q++a q ) ⋅⋅⋅1111 例1: 求等比数列,,,, 前8项和;24816⋅⋅⋅6311111、 等比数列,,,,前多少项的和是?2481664,510⋅⋅⋅11112、 等比数列,,,,求第项到第项的和.1111{}n 1设等比数列a ,首项为a , n11n n 11n a -a q (1-q)s =a -a q s =1-q 在学生推导完成后,我再问:由得首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结.设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识.6.例题讲解,形成技能设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想.7.总结归纳,加深理解以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结.设计意图:以此培养学生的口头表达能力,归纳概括能力.8.故事结束,首尾呼应最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺.设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维.9.课后作业,分层练习必做: P129练习1、2、3、4选作: (2)“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首中国古诗的答案是多少?设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间.四、教法分析对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系.在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.23n-11+a+a +a ++a .例2:求和 .23n x+2x +3x ++nx 思考题(1):求和五、评价分析本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式.错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实.学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性.同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能.在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质.。
等比数列及其前n 项和(讲义)
知识点睛
一、等比数列 1. 等比数列的概念
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (0)q ≠表示. (1)等比中项
(2)等比数列的通项公式:11n n a a q -=.
2. 等比数列的性质
(1)通项公式的推广:*(),n m n m a a q m n N -=∈.
(2)若{}n a 是等比数列,且*(),,,k l m n k l m n N +=+∈, 则k l m n a a a a =⋅⋅.
(3)若{}n a 是等比数列,则k a ,k m a +,2k m a +,…*(),k m N ∈组成公比为m q 的等比数列.
(4)若{}n a 是等比数列,则{}n a λ,{}||n a ,1{}n
a ,{}2
n a 也是等比数列. (5)若{}n a ,{}n b 是等比数列,则{}n n a b ⋅,{
}n
n
a b 也是等比数列. (6)当数列{}n a 是各项均为正数的等比数列时, 数列{}lg n a 是公差为lg q 的等差数列. 二、
等比数列的前n 项和公式
1. 对于等比数列
1a ,2a ,3a ,…,n a ,…
当1q ≠时,
它的前n 项和的公式为1(1)
1n n a q S q -=-或11n n a a q S q
-=-.
当1q =时,
它的前n 项和的公式为1n S na =. 推导过程:错位相减法
2. 等比数列各项和的性质
(1)若m S ,2m S ,3m S 分别是等比数列{}n a 的前m 项,前2m 项,前3m 项的和,则m S ,2m m S S -,32m m S S -成等比数列,其公比为m q . (2)等比数列的单调性
①当101a q >⎧⎨>⎩或10
01a q <⎧⎨<<⎩时,{}n a 是递增数列;
②当1001a q >⎧⎨<<⎩或101
a q <⎧⎨>⎩时,{}n a 是递减数列;
③当101a q ≠⎧⎨=⎩时,{}n a 是常数列;
④当0q <时,{}n a 是摆动数列.
精讲精练
1. 设{}n a 为等比数列,且4652a a a =-,则公比是( )
A .0
B .1或-2
C .-1或2
D .-1或-2
2. 等比数列{}n a 中,1||1a =,528a a =-,52a a >,则n a =( )
A .1(2)n --
B .1(2)n ---
C .(2)n -
D .(2)n --
3. 设1a ,2a ,3a ,4a 成等比数列,其公比为2,则
12
34
22a a a a ++的值为( )
A .14
B .
12
C .18
D .1
4. 在等比数列{}n a 中,0n a >,且211a a =-,439a a =-,则45a a +的值为( )
A .16
B .27
C .36
D .81
5. 已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )
A .7
B .5
C .-5
D .-7
6. 已知{}n a 是等比数列,且0n a >,243546225a a a a a a ++=,
那么35a a +的值为( ) A .5
B .-5
C .±5
D .25
7. 已知数列{}n a 满足130n n a a ++=,24
3a =-,则{}n a 的前10项和等于( )
A .106(13)---
B .101
(13)9
--
C .103(13)--
D .103(13)-+
8. 1111111
1(1)(1)(1)224242
n n S -=+++++++++++=……( )
A .2
n n
B .112n n -+
C .11222n n --+
D .11
2
n n --
9. 各项均为正数的等比数列{}n a 的前n 项和为n S ,若2n S =,314n S =,则4n S =
( ) A .80 B .30 C .26 D .16
10. 一个有穷等比数列的首项为1,项数为偶数,其奇数项之和为85,偶数项之
和为170,则这个数列的项数为________.
11. 已知定义在(0)(0)-∞+∞,,上的函数()f x ,若对任意给定的等比数列{}n a ,
{}()n f a 仍然是等比数列,则称
()f x 为“保等比数列函数”
.现有定义在(0)(0)-∞+∞,,上的如下函数:
①2()f x x =;②()2x f x =;③()f x =()ln ||f x x =. 其中是“保等比数列函数”的()f x 的序号为_____________.
12. 已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,
4427a b +=,4410S b -=.
(1)求数列{}n a 与{}n b 的通项公式;
(2)记1121n n n n T a b a b a b -=+++…,*n N ∈,求T n .
回顾与思考
________________________________________________________ ________________________________________________________ ________________________________________________________
【参考答案】
1.C 2.A 3.A 4.B
5.D
6.A
7.C
8.C
9.B
10.8 11.①③
12.(1)31n a n =-,2n n b =;(2)152610n n T n +=--⋅。