6.3等可能事件的概率(二)
- 格式:doc
- 大小:303.00 KB
- 文档页数:2
中小学最新教育资料中小学最新教育资料 用频率估计概率五注意大量试验表明:当试验次数足够大时,事件A 发生的频率会稳定到它发生概率的大小附近,所以我们常用频率估计事件发生的概率.用频率估计事件发生的概率时,需要注意以下五点:1.频率和概率是两个不同的概念,二者既有区别又有联系.事件发生的概率是一个确定的值,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定;当试验次数增大时,频率的大小波动变小,逐渐稳定在概率附近.2.通过试验用频率估计概率的大小,方法多种多样,但无论选择哪种方法,都必须保证试验在相同的条件下进行,否则结果会受到影响.在相同条件下,试验的次数越多,就越有可能得到较准确的估计值,但每个人所得的值并不一定相同.3.频率和概率在试验中可以非常接近,但不一定相等,两者存在一定的偏差是正常的.如随机抛掷一枚硬币时,理论上“落地后正面朝上”发生的概率为21 ,但抛掷1000枚硬币,并不能保证落地后恰好有500枚硬币正面朝上,但大量的重复试验发现,“落地后正面朝上”发生的频率在21 附近波动. 4.事件发生的概率需要用稳定时的频率来估计,它需要做次数足够多的试验才能比较准确,要注意的是,一次试验的结果是随机的、无法观测的.5.我们可以运用事件出现的频率来估计事件在每次试验中发生的概率的大小.当我们预知某一事件在每次试验中发生的概率大小时,就可以知道当试验次数很大时,事件出现的频率会逐渐接近这个概率值.温馨提示:“一个随机事件在每次试验中发生的概率可以用该事件在多次的重复试验中发生的频率来估计.”这一结论的学习要以自己动手试验和探索为主,例如要确定钉尖触地的概率等问题,都是无法用公式计算解决的,只能求助于试验,这就说明试验是预测某些随机事件发生概率的必要手段,还应就试验的设计、组织、数据的记录和分析、试验结果的合理性等问题和同学们展开讨论与交流,只有这样,才能理解随机事件中隐含的确定性,从而准确地求出随机事件发生的概率的大小.。
北师大版数学七年级下册6.3《等可能事件的概率》教学设计3一. 教材分析《北师大版数学七年级下册6.3《等可能事件的概率》》是学生在学习了概率的基本概念和随机事件的基础上,进一步探讨等可能事件的概率。
本节内容通过具体的实例,引导学生理解等可能事件的概率计算方法,培养学生的动手操作能力和逻辑思维能力。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析学生在学习本节课之前,已经掌握了概率的基本概念,了解了随机事件的概念,能够计算简单事件的概率。
但学生对等可能事件的概率的理解和应用还有待提高。
因此,在教学过程中,教师需要通过具体的实例,引导学生理解和掌握等可能事件的概率计算方法,提高学生的动手操作能力和逻辑思维能力。
三. 教学目标1.知识与技能:使学生理解等可能事件的概率的概念,掌握等可能事件的概率计算方法,能运用所学知识解决实际问题。
2.过程与方法:通过具体的实例,引导学生理解等可能事件的概率计算方法,培养学生的动手操作能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生积极思考、合作交流的学习习惯。
四. 教学重难点1.重点:等可能事件的概率的概念,等可能事件的概率计算方法。
2.难点:理解等可能事件的概率计算方法,能运用所学知识解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究等可能事件的概率计算方法。
2.运用合作交流法,培养学生的团队协作能力和沟通能力。
3.采用实例分析法,使学生直观地理解等可能事件的概率计算方法。
六. 教学准备1.准备相关例题和练习题,以便进行课堂练习。
2.准备多媒体教学设备,以便进行实例演示。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾概率的基本概念和随机事件的概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体展示等可能事件的概率的定义和计算方法,让学生直观地理解等可能事件的概率。
3.操练(10分钟)教师给出具体的实例,引导学生动手操作,计算等可能事件的概率。
§、等可能事件的概率(第1课时)说课稿中宁四中王福喜各位评委老师、各位同仁:下午好:我今天说课的内容是北师大版七年级(下)第六章《概率初步》里第三节第1课时的内容等可能事件的概率。
下面我就从一、说教材和学情;二、说教学目标和教学重难点;三、说教法、学法;四、说教学过程;五、说教学评价。
一、说教材和学情01地位和作用本节课是义务教育教科书北师大版七年级(下)第六章《概率初步》里第三节第1课时的内容等可能事件的概率。
学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对简单事件发生的可能性能够做出预测,并阐述自己的理由。
学生已接触了不确定事件,前面两节课通过活动感受了事件发生的等可能性及游戏规则的公平性,为进一步了解计算一类事件发生可能性的方法、体会概率的意义奠定了知识技能基础。
依据教材的地位和作用我制定了相应的教学重点。
02学情分析本节课授课的对象是中宁四中七年级(2)、(6)班的学生。
概率与我们现实生活的联系非常密切,通过本章的学习不仅能让学生体会到数学与现实生活联系的紧密性,而且也能培养学生的各种能力,特别是通过对数据的收集、整理、分析,锻炼学生的综合实践能力,对培养学生“自主、合作、探究”这种新的学习方式将起到重要的作用。
本节课中体会概率的意义不仅是本章的重点,也是学好本章的关键。
一方面可以使学生体会到概率和确定数学一样也是科学的方法,能够有效地解决现实世界中的众多问题;另一方面,也使学生认识到概率的思维方式与确定性思维的差异。
学生只有具备了这种随机观念才能明智地应付变化和不确定性,这也是构成在义务教育阶段学习概率的重要原因。
我所带这两个班学生的特点是:我班学生知识水平处于本年级中下水平的比较多,基础知识相对较薄弱;所以在教学过程中,要重视基础知识,注重调动大部分基础差的学生的积极性。
结合本班具体的学情分析我制定了相应的教学难点。
二、说教学目标和教学重难点01教学目标:1.通过本节课的学习使学生了解古典概型的特点,学生会根据随机试验结果的对称性或均衡性判断试验结果是否具有等可能性.2.掌握古典概型的概率计算方法,初步体会概率是描述不确定现象的数学模型.3.通过本节课的学习,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣,体会学习数学的实用性.02教学重点与难点:依据新课程改革教学目标及教材的地位和作用我确定了如下的教学重点:重点:古典概率的意义及其计算方法的理解与应用.依据新课程改革的教学目标及我班的具体学情我确定了如下的教学难点:难点:灵活应用概率的计算方法解决各种类型的实际问题.三、说教法、学法01说教法采用以学生自学为主,同伴合作交流以及教师点拨为辅的教学方法。
第课时1.在具体情境中进一步了解概率的意义,体会概率是描述不确定现象的数学模型.2.掌握古典概型及几何概型的概率计算方法.3.能设计符合要求的简单概率模型.在分组讨论、合作探究的过程中体会事件发生的不确定性,进一步体会“数学就在我们身边”.1.进一步培养学生公平、公正的态度,使学生形成正确的人生观.2.提高学生之间的合作交流能力和学习数学的兴趣.【重点】了解另一类(几何概率)事件发生的概率的计算方法,并能进行简单计算.【难点】设计符合要求的简单数学模型.【教师准备】多媒体课件.【学生准备】复习前面课时的概率知识.导入一:一、复习回顾,铺设道路【活动内容】回顾前面学过的有关知识.1.什么是概率?2.如何计算一个事件的概率?[处理方式]1.如果一个事件有n种等可能的结果,事件A包含其中的m种结果,那么事件A发生的概率为.2.重点求公式中的m,n的值.二、创设情境,感悟问题【活动内容】出示一个带指针的转盘,这个转盘被分成8个面积相等的扇形,并标上1,2,3,…,8,若每个扇形面积为单位1,转动转盘,转盘的指针指向转盘的位置在不断地改变.问题1在转动的过程中,当转盘停止时,指针指向每一个扇形区域机会均等吗?那么指针指向每一个扇形区域是等可能的吗?问题2怎样求指针指向每一个扇形区域的概率?它们的概率分别是多少?[处理方式]首先让学生独立思考、书写答案,然后小组交流,最后全班展示,教师总结.(1)因为转盘被等分成8个扇形,所以指针指向每一个扇形区域的可能性相同.(2)P(指针指向每个扇形区域)=.[设计意图]设计情境,从而突出等可能事件发生的概率.注意在整个教学过程中要充分发挥学生的主体地位.导入二:【活动内容】回顾前面学过的有关知识.1.游戏的公平性.2.概率及其计算方法.[处理方式]第1题学生独立思考后回答,由于问题较简单,学生回答踊跃;第2题是第1题的继续,学生回答的方法较多,小组间的竞争提高了学习热情,使学生产生自信和竞争意识,开始在不知不觉中集中精力,走入数学殿堂.[设计意图]“学生原有的知识和经验是教学活动的起点”,通过复习古典概型、几何概型的计算方法,使学生在学习本节知识前扫清障碍,并起到承上启下的作用.探究活动1探究问题,感悟问题思路一问题1如图所示的是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?[处理方式]学生独立思考,书写答案,然后小组交流,最后全班展示,教师总结.以下三种答案:答案一:指针不是落在白色区域就是落在红色区域,落在白色区域和红色区域的概率相等,所以P(落在白色区域)=P(落在红色区域)=.答案二:先把白色区域等分成2份,这样转盘被分成3个扇形区域,其中1个是红色,2个是白色,所以P(落在红色区域)=,P(落在白色区域)=.答案三:利用圆心角度数计算,所以P(落在红色区域)==,P(落在白色区域)==.结论:转盘应被等分成若干份.各种结果出现的可能性务必相同.[设计意图]苏霍姆林斯基说过:“应该让我们的学生在每一节课上都感到热烈的、沸腾的、多姿多彩的精神生活.”课堂上,只有让学生真正“动”“活”起来,学生的学习热情才会高涨,创造力才会加强.问题2转动如图所示的转盘,当转盘停止时,指针落在白色区域和红色区域的概率分别是多少?[处理方式]利用圆心角度数计算,所以P(落在红色区域)==,P(落在白色区域)==.[设计意图]巩固利用圆心角度数计算概率.思路二【活动内容1】如图所示的是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?小明做法:指针不是落在红色区域就是落在白色区域,落在红色区域和白色区域的概率相等,所以P(落在红色区域)=P(落在白色区域)=.小颖做法:先把白色区域等分成2份,这样转盘被分成3个扇形区域,其中1个是红色,2个是白色,所以P(落在红色区域)=,P(落在白色区域)=.你认为谁做得对?说说你的理由,你是怎样做的?[处理方式]让学生独立思考先分析出小明的做法不正确,因为转盘中红色区域和白色区域的面积不同,因而指针落在这两个区域的可能性不同.小明把可能性不同的情况当成等可能的情况处理,这是不对的.小颖的做法是正确的.红色区域和白色区域出现的可能性不同,因此不能当做等可能的情况处理.引导学生继续思考,除了小颖的这种做法还有其他的做法吗?有提前预习的同学会想到还可以利用圆心角度数计算,P(落在红色区域)==.P(落在白色区域)==.书写答案,然后小组交流,最后全班展示,教师总结.[设计意图]把可能性不同的情况当成等可能的情况处理,这是学生容易犯的错误.这一问题意在纠正一些学生的错误想法.课堂上,只有让学生真正“动”“活”起来,学生的学习热情才会高涨,创造力才会加强.【活动内容2】如果换成转动如图所示的转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?你有什么方法?与同伴交流.类似于转盘问题的概率计算方法是什么?[处理方式]这是一个比较有趣的问题,教师可以先让学生独立思考,然后组织学生进行交流.对于这一问题可以类比上一例子,出现多种解答方式.根据小颖的做法,可以把白色区域等分成25份,红色区域等分成11份,这样转盘被等分成36个扇形区域,其中11个是红色,25个是白色,所以P(落在红色区域)=,P(落在白色区域)=.利用圆心角度数计算,所以P(落在红色区域)==,P(落在白色区域)==.进而总结出类似于转盘问题的处理公式:P=或.[设计意图]通过上一环节学生已经了解了几何概型公式计算的前提是各种结果出现的可能性务必相同.此时出示这两道例题,是让学生达到学以致用的目的.注意在此环节仍需给学生充分的时间解决问题.探究活动2例题讲解某路口南北方向红绿灯的设置时间为:红灯20秒、绿灯60秒、黄灯3秒.小明的爸爸随机地由南往北开车经过该路口,则:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到红灯的概率是多少?[处理方式]由一个学生板书答案,其余学生在练习本上独立完成.解:(1)因为P(遇到红灯)==,P(遇到绿灯)==,因为<,所以遇到绿灯的概率大.(2)P(遇到红灯)=,所以他遇到红灯的概率是.在教学时,教师可以引导学生举出与本例叙述不同但本质相同的概率模型,使学生从中体会到概率模型的思想.例如,有一个由83个小方块组成的区域,其中有20个红色方块,60个绿色方块,3个黄色方块,每个小方块除颜色外完全相同,一个小球在地面上自由地滚动,并随机地停留在某方块上,它最终停留在红色小方块上的概率是多少?[知识拓展]1.概率的求法有两种:一是类似于摸球,用结果数的比求概率;二是类似于转盘用面积的比求概率.2.求概率时要注意各结果可能性是否相等,如果不相等,不能简单地用结果数相比,而应划分为各结果等可能的情况,再来计算.1.公式总结.2.各种结果出现的可能性务必相同.3.在生活中要善于应用数学知识.1.一位汽车司机准备去商场购物,然后他随意把汽车停在某个停车场内,如图所示,停车场分A,B两区,停车场内一个停车位置正好占一个格且每一个格除颜色外完全一样,则汽车停在A区深色区域的概率是,停在B区深色区域的概率是.解析:A,B两区共有13个格,A区中颜色深的区域有2个,则汽车停在A区深色区域的概率是,B区中深色区域有4个,则汽车停在B区深色区域的概率是.答案:2.如图所示,当转盘转动停止时.①指针落在红色区域的概率比落在绿色区域的概率;②指针落在绿色区域的概率与落在黄色区域的概率;③指针落在黄色区域的概率比落在蓝色区域的概率;④指针落在绿色区域的概率比落在蓝色区域的概率.答案:①大②相等③小④小3.如图所示,把一个圆形转盘按1∶2∶3∶4的比例分成A,B,C,D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为.答案:4.如图所示的是一个可以自由转动的转盘,转盘被分成了6个扇形,其中标有数字1的扇形的圆心角为90°;标有数字2,4及6的扇形的圆心角均为60°;标有数字3,5的扇形的圆心角均为45°.利用这个转盘甲、乙两人开始做下列游戏:自由转动转盘,转盘停止时,指针指向奇数则甲获胜,而指针指向偶数则乙获胜,你认为这个游戏对甲、乙双方公平吗?为什么?解:公平.因为标有数字1的扇形的圆心角为90°,标有数字2,4及6的扇形的圆心角均为60°,标有数字3,5的扇形的圆心角均为45°,所以标有奇数的圆心角度数为90°+45°+45°=180°,标有偶数的圆心角度数为60°+60°+60°=180°,所以P(甲获胜)=P(乙获胜)=,所以这个游戏对甲、乙双方公平.第4课时探究活动1探究问题,感悟问题探究活动2例题讲解一、教材作业【必做题】教材第155页习题6.7知识技能第1,2,3题.【选做题】教材第155页习题6.7数学理解第4题.二、课后作业【基础巩固】1.某商场为促销开展抽奖活动,让顾客转动一次转盘,当转盘停止后,只有指针指向阴影区域时,顾客才能获得奖品,下列有四个大小相同的转盘可供选择,使顾客获得奖品可能性最大的是()2.如图所示,有三个同心圆,由里向外的半径依次是2 cm,4 cm,6 cm,将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是.【能力提升】3.“五一”期间,张先生驾驶汽车从甲地经过乙地到丙地旅游,甲地到乙地有2条公路,乙地到丙地有3条公路,每条公路的长度如图所示(单位:km),张先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率为 ()A. B. C. D.【拓展探究】4.如图所示的是没有涂色的且可以自由转动的转盘,该转盘被分成6个相等的扇形区域.(1)请你在转盘的适当地方涂上不同的颜色,使得自由转动这个转盘,当它停止转动后,指针落在涂有颜色的区域的概率是.(2)如果利用你涂好颜色的转盘来决定甲、乙两位同学谁今天值日,你认为公平吗?若认为公平,请简要说明理由;若认为不公平,请提出公平合理的涂色方案.【答案与解析】1.A(解析:由题意可知,A中阴影部分占整个圆的;B中阴影部分占整个圆的;C中阴影部分占整个圆的;D中阴影部分占整个圆的.故选A.)2.(解析:因为有三个同心圆,由里向外的半径依次是2 cm,4 cm,6 cm,将圆盘分为三部分,所以阴影部分的面积为π(42- 22)=12π,大圆的面积为36π,所以飞镖落在阴影圆环内的概率是=.)3.A(解析:从甲地到丙地的路线可以有6种选择,分别是80+100(上),80+80,80+100(下),50+100(上),50+80,50+100(下),最短的是50+80这条路线,故这条路线正好是最短路线的概率为.故选A.)4.解:(1)如图所示.(答案不唯一)(2)不公平,因为概率不相等.建议平均分成两份,分别涂色即可.1.探究发现法.把教的过程变成学生发现问题,发现方法的过程,本课时通过创设情境,诱导学生通过独立思考、主动探索、小组讨论、全班展示、主动建构,完成知识的转化.2.直观教学法.结合直观演示法和多媒体展示,引导学生在轻松、愉快的氛围中学习数学,并且积极调动学生观察、动手操作、动脑思考,多种感官参与,体现数学来源于生活、应用于生活的真谛.确保学生的主体、中心地位,教师充当指挥员,调动学生的积极性,明白如何思考,课堂上通过运用各种启发、激励的语言,帮助学生形成积极主动的求知态度.没留给学生充分的交流讨论时间,错题纠正不够到位.学生以实践者的身份去观察、思考、讨论、创新,体验建构知识的过程,弄清来龙去脉,调动起学生的主动性和学习的热情,体现学生学习的个性化、自主化.引导学生在小组交流和讨论中学习,相互启发,相互交流解决问题的策略,提高思维水平.通过学生自己动手、动脑,主动解决问题的教学方法,培养学生通过观察、思考发现问题,从而产生想要解决问题的欲望,通过自己动手操作、完成任务、解决问题,获得成功的喜悦,树立了自信心.这样教给学生的不单单是知识和技能,而且还教给了学生获取知识的方法.注意留给学生充足的思考时间,不要让个别思维活跃的学生的回答,掩盖其他学生的思维活动.11/ 11。
概率初步主题单元教学设计
确定事件
事件
(二)学生探究教师引领
探究1:
5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:
(1)抽到的序号是0,可能吗?这是什么事件?
(2)抽到的序号小于6,可能吗?这是什么事件?
(3)抽到的序号是1,可能吗?这是什么事件?
(4)你能列举与事件(3)相似的事件吗?
探究2:
小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一
数
率
解:甲顾客购物的钱数在100元到200元之间,可以获得一次转动转盘的机会。
转盘一共等分成20个扇形,其中1份是红色、2份是黄色、4份是绿色,因此,对于该顾客来说,
P(获得购物券)=_______________;
P(获得100元购物券)=_______________;
P(获得50元购物券)=_______________;
P(获得20元购物券)=_______________。
拓展:
如图所示转盘被分成16个相等的扇形。
请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针
落在红色区域的概率为。
例2.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转。
【纠错必备】等可能事件的概率易错点1 错误理解概率的真正含义例1 “闭上眼睛从口袋中随机摸出一球恰好是红球的概率是72”的意思是摸球7次就有2次摸出红球。
你认为这种说法对吗?错解:这种说法是对的.剖析:造成错解的原因是没有真正理解概率的含义.概率是针对大量试验而言的,大量试验反映出来的规律,并非在每一次试验中都一定存在.正解:这种说法不对.这句话的意思是:如果摸球很多次的话,平均7次大约有2次摸出红球。
易错点2 错误使用概率计算公式例2 在一个口袋中装有5个黄球和10个红球,它们除颜色外没有其他区别,并且口袋中的球已经被搅匀,问闭上眼睛从口袋中随机地摸出一球,恰好是黄球的概率是多少? 错解:恰好是黄球的概率P =105=21 。
剖析:造成错解的原因是没有明确所有等可能的结果有哪些.口袋里共有15个球,故有15种等可能的结果。
错解中的概率是“部分与部分之比”,而不是“部分与整体之比”。
正解:恰好是黄球的概率P =1055 =31 . 易错点3 错误估计与图形面积有关的概率例 3 有一个转盘,由红、白、蓝三种颜色组成,转动该转盘,待转盘停止后,指针指向各颜色区域的概率是多少?错解:指针指向各颜色区域的概率是31。
剖析:指针指向各颜色区域的概率的大小由转盘中三种颜色区域的面积分别占总面积的百分比来确定,造成错解的原因是误认为三种颜色区域的面积相等.正解:由于不知道红、白、蓝三种颜色区域的面积分别占总面积的百分比,所以无法确定指针指向各颜色区域的概率大小。
只有当转盘中三种颜色区域的面积相等时,指针指向各颜色区域的概率才是31。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
6.3 等可能事件的概率学习目标:1.通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法;2.体会概率的意义,会计算简单的事件发生的概率。
3.灵活应用概率的计算方法解决各种类型的实际问题学习过程:一、课前预习、温故知新(认真预习课本P147-148,预习后将确定的答案用钢笔写上,不确定的答案用铅笔写上,有疑难的用红笔标注,上课前检查)1. 认真预习课本P147引入问题及“议一议”,尝试理解获得新知识;2. 认真预习思考课本P147“想一想”,思考并尝试回答问题获得新知识;一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:3.预习尝试完成课本P147例1;4.尝试完成随堂练习。
二、情景探索、交流展示1.小组合作学习课本P123“议一议”,认真思考.一个袋中有5个球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球。
(1)会出现哪些可能的结果?(2)每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?2.“想一想”你能找出一些结果等可能的事件吗?试举一例。
认识新知:一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:13.自主学习课本例题、获得新方法完成下列问题:有7张纸签,分别标有数字1,1,2,2,3,4,5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率。
三、巩固练习、拓展提高1.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球,编号是2的概率为()A. 23 B.16C.13D.122.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、正方形、角、等腰三角形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是轴对称图形的概率为( )A. 14 B. 12C. 34D. 13. 已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是()A.连续抛一枚均匀硬币2次必有1次正面朝上; B.连续抛一枚均匀硬币10次都可能正面朝上; C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次;D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的4.把标有号码1,2,3,……,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是______.5.口袋中有2个白球,1个黑球,从中任取一个球,摸到白球的概率为_________.6.把一个骰子掷一次,共有_________种不同的结果.掷出点数小于3的概率是,掷出点数不小于3的概率是,掷出点数是偶数的概率是,掷出点数小于是6的概率是,掷出点数大于6的概率是;237. 5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天从孔氏南宗家庙、烂柯河、龙游石窟中随机选择一个地点,王先生恰好选中孔氏南宗庙的概率是※8.如图,A 、B 是数轴上的两点,在线段AB 上任取一整数点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A .21B .32C .43D .54 四、检测反馈1.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是 .2.有5个零件,已知其中混入了一个不合格产品,现任取其中一个,是正品的概率是_____;3.下表表示某签筒中各种签的数量。
北师大版数学七年级下册第六章6.3等可能事件的概率课时练习一、选择题(共15个小题)1.任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是()A.12B.13C.23D.16答案:B解析:解答:任意掷一枚质地均匀的骰子,掷出的点数可以是1,2,3,4,5,6,共6种可能,而大于4的点数只有5,6,所以掷出的点数大于4的概率是2163=,故选B.分析:本题关键是算出共有多少球,以及有几个红球.2.一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P(摸到红球)等于()A.12B.23C.15D.110答案:C解析:解答:袋中有2个红球,3个蓝球和5个白球,故共有球10个,所以从中任意摸出一个球,则P(摸到红球)=21105=,故选C.分析:本题关键是算出共有多少球,以及有几个红球.3.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A. P1> P2B.P1< P2C.P1=P2D.以上都有可能答案:A解析:解答:在甲图中,小球最终停留在黑色区域的概率为P1=63168=,在乙图中,小球最终停留在黑色区域的概率为P2= 39,38>39故选A.分析:本题关键是分别算出在各个图中各自的概率,然后进行比较.4.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是()A.120B.19100C.14D.以上都不对答案:C解析:解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004,故选C.分析:本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.5.一个事件的概率不可能是()A.0B.12C.1D.32答案:D解析:解答:不论任何事件的概率,最小为0,最大为1,没有大于1的存在.故选D.分析:本题关键是清楚概率取值的范围是不小于0且不大于1.6.从1至9这些数字中任意取一个,取出的数字是偶数的概率是()A.0B.1C.59D.49答案:D解析:解答:在1至9这些数字中,共有2,4,6,8四个偶数,因此从这九个数字中任意取一个,取出的数字是偶数的概率是.故选D.分析:本题关键是清楚偶数有几个,然后运用比例就求出来了.7.小刚掷一枚硬币,一连9次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A.0B.1C.12D.23答案:C解析:解答:小刚掷一枚硬币,他第十次掷硬币,出现正面朝上还是反而朝上,与前面九次没有任何联系,这十次掷硬币,是十个相互独立的事件,每一次正面朝上与反面朝上,都是概率相同的.故选C.分析:本题关键是清楚每次掷硬币,都是相互独立的事件.8.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( )A.能开门的可能性大于不能开门的可能性B.不能开门的可能性大于能开门的可能性C.能开门的可能性与不能开门的可能性相等D.无法确定答案:B解析:解答:既然是一大串钥匙,那么应该多于3把,而其中只有一把是能够开锁的,因此任取一把,不能开门的可能性大于能开门的可能性,故选B.分析:本题关键是清楚一大串钥匙的含义.9.有100个相同大小的球,用1至100个数编号,则摸出一个是5的倍数号的球的概率是()A.120B.19100C.15D.以上都不对答案:C解析:解答:100个相同大小的球,用1至100个数编号,那么编号是5的倍数的共有20个,因此摸出一个是5的倍数号的球的概率是2011005=,故选C.分析:本题关键是找出5的倍数号的球共有多少个.10.某商店举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设立特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是()A.110000B.5010000C.10010000D.15110000答案:D解析:解答:每10000张奖券为一个开奖单位,共有奖:特等奖1个+一等奖50个+二等奖100个=151个奖,所以买100元商品的中奖的概率是15110000,故选D.分析:本题关键是找出共有奖多少个.11.在一个口袋中,共有50个球,其中白球20个,红球20个,其余为篮球,从中任摸一球,摸到不是白球的概率是()A.15B.25C.35D.45答案:C解析:解答:口袋中,共有50个球,其中白球20个,那么不是白球的球共有30个,所以摸到不是白球的概率是303505=,故选C.分析:本题关键是找出不是白球的球有多少个.12.在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( ) A . 0.34 B . 0.17 C . 0.66 D . 0.76 答案:C解析:解答:在一次抽奖中,抽中的概率和抽不中的概率之和是1,抽中的概率是0.34,则抽不中的概率是1-0.34=0.76,故选C .分析:本题关键是清楚抽中的概率和抽不中的概率之和是1.13.用1、2、3这三个数字,组成一个三位数,则组成的数是偶数的概率是( ) A .13 B .14C .15D . 16 答案:A解析:解答:用1、2、3这三个数字,组成一个三位数,共有6个不同的数为:123,132,213,231,312,321,其中偶数有132,312两个,所以组成的数是偶数的概率为2163=,故选A .分析:本题关键是找出共有几个数,以及偶数有几个.14.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方( )A .公平B .对甲有利C .对乙有利D .无法确定公平性 答案:A解析:解答:同时掷两枚相同的硬币,所有等可能的事件如下表所示:同面朝上的概率为42=,异面朝上的概率为42=,故选A . 分析:本题关键是弄清楚等可能的事件是什么.15.小伟向一袋中装进a 只红球,b 只白球,它们除颜色外,无其他差别.小红从袋中任意摸出一球,问他摸出的球是红球的概率为( ) A .a b B . b a C .+a a b D .+ba b答案:C解析:解答:袋中装进a 只红球,b 只白球,共有球(a +b )只,所以从袋中任意摸出一球,摸出的球是红球的概率等于+aa b,故选C . 分析:本题关键是弄清楚红球的个数和共有球数. 二、填空题(共5个小题)16.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于_______.答案:38. 解析:解答:由图可以看出,一共有最小规格的正三角形16个,其中涂黑了的有6个.有等可能的情况之下,扔沙包1次击中阴影区域的概率等于63168=. 分析:本题关键是数出共有的最小三角形和涂黑的三角形个数.17.必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______. 答案:必然事件发生的概率是1,即P(必然事件)= 1;不可能事件发生的概率是0,即P (不可能事件)=0;若A 是不确定事件,则0)<(<A P 1.解析:解答:根据必然事件、不可能事件、不确定事件的意义,可得必然事件发生的概率是1,即P(必然事件)= 1;不可能事件发生的概率是0,即P (不可能事件)=0;若A 是不确定事件,则0)<(<A P 1.分析:本题考察对概率意义的理解,关键是明确各事件的概率.18.一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______. 答案:14|113解析:解答:一副扑克牌去掉大王、小王后还有52张,其中方块有13张,所以随意抽取一张,抽到方块的概率是131524=;在这52张中,3共有4张,因此抽到3的概率是415213=. 分析:本题考察对概率意义的理解,关键是分析出朝上的点数中有几个是奇数.19.任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.答案:1 2解析:解答:任意掷一枚质地均匀的骰子,朝上的点数可能是1,2,3,4,5,6,其中有三个奇数,因此朝上的点数是奇数的概率是12.分析:本题考察对概率意义的理解,关键是分析出朝上的点数中有几个是奇数.20.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.答案:1 4解析:解答:因为选择题有四个选项,所以小明靠猜测获得结果,其答对的概率是14.分析:本题考察对概率意义的理解,关键是根据选项个数,分析出概率是多少.三、解答题(共5个小题)21.下列事件中,哪些是确定事件?哪些是不确定事件?(1)任意掷一枚质地均匀的骰子,朝上的点数是6.答案:不确定事件;解答:任意掷一枚质地均匀的骰子,朝上的点数可能是1,2,3,4,5,6,因此,朝上的点数是6是不确定事件.(2)在一个平面内,三角形三个内角的和是190度.答案:确定事件,也是不可能事件;解答:根据三角形的内角和定理,在一个平面内,三角形三个内角的和是180度.因此,三角形三个内角的和是190度是确定事件,也是不可能事件.(3)线段垂直平分线上的点到线段两端的距离相等.答案:确定事件,也是必然事件;解答:根据线段的垂直平分线的性质可知,线段垂直平分线上的点到线段两端的距离相等,故是一个确定事件,也是必然事件.解析:分析:本题考察对概率意义的理解,关键是根据各小题题干,分析出概率是多少.22.请将下列事件发生的概率标在图中:(50%)0.5不可能发生必然发生(100%)1(1)随意掷两枚质地均匀的骰子,朝上面的点数之和为1;答案:(50%)0.5不可能发生必然发生(100%)解答:因为每一枚质地均匀的骰子,抛掷后朝上面的点数最小为1,所以两枚朝上面的点数之和最小为2,因此,点数之和为1是不可能发生的.(2)抛出的篮球会下落;答案:(50%)0.5不可能发生必然发生(100%)1解答:在地球万有引力的作用下,抛出的篮球会下落,这是必然发生的.所以可能性为1. (3)从装有3个红球、7个白球的口袋中任取一个球,恰好是红球(这些球除颜色外完全相同);答案:310(50%)0.5不可能发生必然发生(100%)解答:口袋中装有3个红球、7个白球,共有10个球,任取一个球,恰好是红球的概率为3 10,所以点应该标在310处.(4)掷一枚质地均匀的硬币,硬币落下后,正面朝上.答案:(50%)0.5不可能发生必然发生(100%)解答:掷一枚质地均匀的硬币,硬币落下后,正面朝上与反面朝上的概率相同,都为12,所以点应该标在12即50%处. 解析:分析:本题考察对概率意义的理解,关键是根据各小题题干,分析出概率是多少.23.下面是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域的概率.答案:14|38解答:由图可以看出,在第一个转盘内,红色区域的圆心角是90°,因此可以算得指针落在红色区域的概率是9013604=;在第二个转盘内,红色区域的圆心角是135°,因此可以算得指针落在红色区域的概率是135273360728==. 解析:分析:本题考察对概率意义的理解,关键是根据图示,由圆心角的度数求出概率. 24.用10个球设计一个摸球游戏: (1)使摸到红球的概率为15; 答案:2个红球,8个白球;解答:在一个不透明的口袋内装大小材质相同的小球,其中2个红球,8个为白球,则摸到红球的概率符合要求.(2)使摸到红球和白球的概率都是2 5 .答案:4个红球,4个白球,2个其他颜色球.解答:在一个不透明的口袋内装大小材质相同的小球,其中4个红球,4个白球,2个黑球,则摸到红球和白球的的概率符合要求.解析:分析:本题考察对概率意义的理解,关键是根据要求,算出符合条件的各色小球的个数. 25.一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,请问(1)取出的小球编号是偶数的概率是多少?答案:1 2解答:一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,那么每一个小球被取到的概率是相同的.这其中,编号为偶数的有25个,所以取出的小球编号是偶数的概率是251 502=.(2)取出的小球编号是3的倍数的概率是多少?答案:8 25解答:一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,那么每一个小球被取到的概率是相同的.这其中,编号为3的倍数的小球共有16个,所以所频率为168 5025=.(3)取出的小球编号是质数的概率是多少?答案:6 25解答:从1到50这50个编号中,质数有2,3,5,7,11,13,17,19,23,29,31,37,共12个,所以小球编号是质数概率是126 5025=.解析:分析:本题考察对概率意义的理解,关键是找出各种符合条件的编号的个数.。
辛二七数下导学案—49 6.3等可能事件的概率(二)
教学目标:1、通过面积、体积计算事件发生的概率。
2、设计符合要求的简单事件发生的概率模型。
教学重点:通过面积、体积计算事件发生的概率。
教学难点:设计符合要求的简单事件发生的概率模型。
教学方法:导学法。
教学工具:电子白板,多媒体
课堂教学过程设计:
一、回顾旧知:请将下列事件发生的概率标在图上:
① 从三个红球中摸出一个红球
②从三个红球中摸出一个白球
③从一红一白两球中摸出一个红球
④从红、白、蓝三个球中摸出一个红
二、自学探究:
【活动一】通过面积、体积计算事件发生的概率。
(几何概率)
1、事件A 发生的概率等于此事件A 发生的可能结果所组成的面积(用S A 表示)除以所有可能结果组成图形的面积(用S 全表示),所以几何概率公式可表示为P (A )=S A /S
全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的 与总 的关系;(2)然后计算出各部分的 ;(3)最后代入公式求出 。
●尝试练习:
如图是一个小方块相间的长方形,自己在方块上涂上黑色。
(1)用一个小球在上面随意滚动,落在黑色方块(各方块的大小相同)的概率是
(2)对你刚刚设计的游戏中,小球落在黑色方块的概率大还是
落在白色方块的概率大? 【活动二】转盘游戏的设计及概率计算。
如图是一个可以自由转动的转盘,转动转盘,指针停在深色区域和白色区域的
概率分别是多少?
【活动三】设计概率模型(游戏或事件)
1、设计符合要求的简单概率模型(游戏或事件)是对概率计算的逆向运用。
2、设计通常分四步:
(1)首先分析设计应符合什么 ;
(2)其次确定选用什么 表示更合理;
(3)然后再按一定要求和操作经验来设计模型;
(4)最后再通过计算或其他方法来验证设计的模型是否符合 。
●尝试练习:
1、设计一个转盘,使它停止转动时,指针落在白色区域的概率是落在深色区域的概率的2倍。
三、课堂检测:
1.某商店举办有奖销售活动,办法如下:凡购货满100元得奖券一张, 多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则1 张奖券中一等奖的概率是___.
2.有7张卡片,分别写有0、1、2、3、4、5、6、7、8七个数字, 将它们的背面朝上洗匀后,任意抽出一张:
(1)P(抽到数字7)=________; (2)P(抽到数字3)=________; (3)P(抽到一位数)=______;
(4)P(抽到三位数)=_____; (5)P(抽到的数大于4)=____; (6)P(抽到的数不大于4)=___;
(7)P(抽到奇数)=__________
3.如图是一个转盘,若转到红色则小明胜,转到黑色则小东胜,这个游戏对双方是否公平?并说明理由。
黄
红
黑
4.编号为1~10的十张卡片,甲从中任意抽取一张,若其号码数能被3 整除则获胜,甲抽取的卡片放回后,乙也从中任意抽取一张,若其号码数除以3余数为1 则获胜,这项游戏对甲、乙两人公平吗?若不公平,应如何添加卡片?( 卡片上的编号与原来卡片上的编号不同)
5.图7—4是一个可以自由转动的转盘,转动转盘,指针停在各种颜色的区域概率分别是多少?
四、小结:本节课学习了1、通过面积、体积计算事件发生的概率。
2、设计符合要求的简单事件发生的概率模型。
教学后记:。