材力题解第10章
- 格式:doc
- 大小:453.00 KB
- 文档页数:5
材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
第一章 绪论一、是非判断题1.1 内力只作用在杆件截面的形心处。
( ) 1.2 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.3 材料力学的研究方法与理论力学的研究方法完全相同。
( )1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 同一截面上各点的切应力τ必相互平行。
( ) 1.6 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。
( ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。
( ) 1.9 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( ) 1.14 若物体内各点的应变均为零,则物体无位移。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( ) 1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 拉伸或压缩的受力特征是 ,变形特征是 。
1.2 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.3 剪切的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.4 扭转的受力特征是 ,变形特征是 。
1.5 构件的承载能力包括 , 和 三个方面。
1.6 弯曲的受力特征是 ,变形特征是 。
1.7 组合受力与变形是指 。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
第一章绪论判断题1、根据均匀性假设,可认为构件的应力在各点处相同。
()2、根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
()3、固体材料在各个方向具有相同力学性能的假设,称为各向同性假设。
所有工程材料都可应用这一假设。
()4、在小变形条件下,研究构件的应力和变形时,可用构件的原始尺寸代替其变形后的尺寸。
()5、任何物体都是变形固体,在外力作用下,都将发生变形。
当物体变形很小时,就可视其为刚体。
填空题1、材料力学的任务是。
2、为保证机械或工程结构的正常工作,其中各构件一般应满足、和三方面的要求。
3、物体受力后产生的外效应是,内效应是;材料力学研究的是效应问题。
4、认为固体在其整个几何空间毫无空隙地充满了物质,这样的假设称为假设。
根据这一假设,构件的就可用坐标的连续函数表示。
5、受外力而发生变形的构件,在外力解除够后具有消除变形的这种性质称为;而外力除去后具有保留变形的这种性质为。
选择题1、根据均匀性假设,可认为构件的()在各点处相同。
A 应力B 应变C 材料的弹性常数D 位移2、根据各向同性假设,可认为构件的()在各方向都相同。
A 应力B 应变C 材料的弹性常数D 位移3、确定截面的内力的截面法,适用于()。
A 等截面直杆B 直杆承受基本变形C 直杆任意变形D 任意杆件4、构件的强度、刚度和稳定性( )。
A 只与材料的力学性质有关B 只与构件的形状尺寸有关C 与A、B都有关D 与A、B都无关5、各向同性假设认为,材料沿各个方向具有相同的( )。
A 外力B 变形C 位移D 力学性能6、材料力学主要研究( )。
A 各种材料的力学问题B 各种材料的力学性能C 杆件受力后变形与破坏的规律D 各类杆中力与材料的关系7、构件的外力包括( )。
A 集中载荷和分布载荷B 静载荷和动载荷C 载荷与约束反力D 作用在物体上的全部载荷第二章杆件的内力分析判断题1、材料力学中的内力是指由外力作用引起的某一截面两侧各质点间相互作用力的合力的改变量。
第一章 绪论1-1矩形平板变形后为平行四边形,水平轴线在四边形AC 边保持不变。
求(1)沿AB边的平均线应变; (2)平板A 点的剪应变。
(答案:εAB =7.93×10-3 γXY =-1.21×10-2rad )第二章 拉伸、压缩与剪切2-1 试画图示各杆的轴力图,并指出轴力的最大值。
2-2 一空心圆截面杆,内径d=30mm ,外径D=40mm ,承受轴向拉力F=KN 作用,试求横截面上的正应力。
(答案:MPa 7.72=σ)2-3 题2-1 c 所示杆,若该杆的横截面面积A=502mm ,试计算杆内的最大拉应力与最大压应力(答案:MPa t 60max ,=σ MPa c 40max ,=σ)2.4图示轴向受拉等截面杆,横截面面积A=5002mm ,载荷F=50KN 。
试求图示截面m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
(答案:MPa MPa MPa MPa 50 ; 100 ; 24.49 ; 32.41max max ==-==τστσαα)2.6 等直杆受力如图所示,试求各杆段中截面上的轴力,并绘出轴力图。
2.8某材料的应力-应变曲线如图所示,试根据该曲线确定: (1)材料的弹性模量E 、比例极限P σ与屈服极限2.0σ; (2)当应力增加到MPa 350=σ时,材料的正应变ε, 以及相应的弹性应变e ε与塑性应变p ε 2.9图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1=30mm 与d2=20mm ,两杆材料相2.10图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A处承受铅垂方向的载荷F作用,试确定钢杆的直径d与木杆截面的边宽b。
已知载荷F=50KN,钢的许用应力[]σ=160MPa木杆的许用应力[]wσ=10MPa(答案:d≥20mm,b≥84.1mm)2.11 题2.9所述桁架,试确定载荷F的许用值[]F。
(答案:[]F=97.1KN )2.12某钢的拉伸试件,直径d=10mm ,标距mm l 500=。
材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5. 材料的力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V E G +=12塑性材料与脆性材料的比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
选择题1.构件在外力作用下(B )的能力称为稳定性。
A .不发生断裂B .保持原有平衡状态C .不产生变形D.保持静止3 .小变形指的是(C )二、判断题(正确的打“错的打“X”)1 .材料力学的任务是在保证安全的原则下设计构件。
(X )2 .构件的强度、刚度和稳定性与所用材料的力学性质有关。
(V )3 •要使结构安全正常地工作,就必须要求组成它的大部分构件能安全正常地工作。
(X )4 .任何物体在外力作用下,都会产生变形。
(V )5 .自然界中的物体分为两类:绝对刚体和变形固体。
(X )6 .设计构件时,强度越高越好。
(X )、填空题2.物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称为A.弹性 B .塑性C .刚性D .稳定性A .构件的变形很小B .刚体的变形C .构件的变形比其尺寸小得多4 .材料力学主要研究(D )。
A .材料的机械性能 D .构件的变形可以忽略不计B .材料的力学问题C .构件中力与材料的关系D .构件受力后的变形与破坏的规律1•材料力学的任务是研究构件在外力作用下的(变形、受力与破坏或失效)的规律,为合理设计构建提供有关(强度、刚度、稳定性)分析的基本理论和计算方法。
2•构件的强度表示构件(抵抗破坏的)能力;刚度表示构件(抵抗变形的)能力;稳定性表示构件(保持原有平衡形式的)能力。
3•杆件在外力作用下的四种基本变形分别是:(拉压),(剪切),(弯曲),(扭转)。
拉伸与压缩一、选择题(有4个备选答案选出其中一个正确答案。
)1 •若两等直杆的横截面面积为A,长度为I,两端所受轴向拉力均相同,但材料不同,那么下列结论正确的是(B )。
A•两者轴力不相同 B •两者应变不同C.两者变形不相同 D •两者伸长量相同2.设和!分别表示拉压杆的轴向线应变和横向线应变, 确的是(B)。
A. —B. —C.3.图I-2I表示四种材料的应力一应变曲线,则:(1)弹性模量最大的材料是(A );(2)强度最高的材料是(B );(3)塑性性能最好的材料是(D )。
第十章组合变形的强度计算10-1图示为了梁的各种截面形状,设横向力P的作用线如图示虚线位置,试问哪些为了平面弯曲哪些为了斜弯曲并指出截面上危险点的位置O(a) (b) (c) (d)斜弯曲平面弯曲平面弯曲斜弯曲斜弯曲弯扭组合平面弯曲斜弯曲“x〞为了危险点位置.10-2矩形截面木制简支梁AE 在跨度中点 C 承受一与垂直方向成 =15.的集中力P=10 kN 作用如图示,木材的弹性模量E 1.0 104MPa .试确定①截面上中性轴的解:P y Pcos 10 cos15 9.66 KNP z Psin 10 sin 152.59KN___3750 cm 3W y一_ 3 一 7.25 1031.94甘MPa中性轴:tan 1- tan J y1104tan ------------ tan 155625 25.47f yPyK 339.66 10 348EJ z___ 9 _ 4_ 848 10 10 101020.5434 10 2m位置;②危险截面上的最大正应力;③C 点的总挠度的大小和方向.J z3也竺104 cm 412 W z3310 cmJy1235625 3cmP y l 9.66 3z max44P z l 2.59 3y max44M zmaxM y max103 750 10 61039.84 W y7.25 KN-MM 1.94 KN-MM maxW zf . 0.54342 0.25920.602 cm10-3矩形截面木材悬臂梁受力如图示,P1 = 800 N , P2 = 1600 N . [b ]=10MPa,弹性模量E= 10GPa 设梁截面的宽度 b 与高度h 之比为了1: 2 截面尺寸;②求自由端总挠度的大小和方向.解:(I) M zmaxP 2 1 1.6 KN M ymaxP 0 21.6 KNf zP z l 3 33 2.59 10 348EJ y__一 9_ __ 848 10 105625 10_ 20.259 10 mW zbh 2_2b(2b)2b 33W ybh 2 2b 3材料许用应力O ①试选择梁的方向 中性轴: 25.47max b = 9 cm(II ) ftan M zmax M y maxW z W Y,h = 18 cmP I23 23EJ yf z 1.95匚0.30531.6 102 a-3b31.6 1013bP2 13P2 133EJ z 2EJ z81.11.9710 106._ 210 m 1.97 cm10-4简支梁的受力及横截面尺寸如图示.钢材的许用应力]=160 MPa,试确定梁危险截面中性轴的方向与校核此梁的强度.P=14kN题10-4图解:J z32d4 bh312 321044 6312909.7484cm中性轴:d32bh312 321046 4312949.748 4cmtan 1里tanJ ytan909.748 x _---------- t an 45949.74843.77(mm 的等边角钢,假设 P =25kN,试求最大弯矩截面上 A 、宙日C 点的弯曲正应力.z 10 sin 43.77 6.918 cm y10 cos43.77 7.221cmMmax14 1 14 KNmM y Mmaxcos 45 9.9M zMmaxsin 45 9.9危险点:9.9max103 6.918 10 9.9 8949.748 102107.221 10150.69 MPa8909.748 10J y0 1180.04cm4JZ044554.55cmW z0 322.06cm 3 W y0146.55cm 3pl M max25 KN 4 M y M z M cos45 M zM yA — y A— J zOJ y °146.2MPaM zM yC —V AzJZ OJ y °解: mZ AA 17.68 KN m3317.68 10141.42 10.一 84554.55 1036.42 MPa3317.68 1060.95 1041180.04 1010-5图示简支梁的截面为了精品资料,欢迎大家下载!317.68 103----------------- 8 80.47 10 120.561180.04 1010-6旋臂 式吊车 梁为了16号工字钢,尺寸 如下图,允许 吊重[]=160MPa .试校核吊车梁的强度.解:B 点:No16 工字钢:A 26.1cm 2, J z 1130cm 4H 10-6 图H N H HP 1.08 1.941.94 1.940.8 15.57 KN1.94 - 15.57 37.76 KN 0.8max337.76 10310 1.08 10 A W 26.1 10141 1091.1MPa 压M y L BMPaP =10kN ,材料的,W z 141cm 3[P ],并作危险截面上的应力分布图,指出最大应力发生在哪一点 解:N = P2A 2.5 10 25cm 2N MA WP 120 106?1 60 10 225 10 4 41.667 10d,♦府制I题 10-72M max 60P 10 2, W.22.5 1026_____ 341.667 cm8108N 8.108KN10-8 悬重构架如下图,立柱AB系用No25a的工字钢制成.许用应力[]=160 MPa ③列式表示顶点B的水平位移.解:'一图(II ) max_ _ _3M 20 103W 48.5 10 4153.42MPa一_360 103 6------------------------- 6 153.42 10 Pa401.883 10(III) f B P 9 P 6 --------- 3 9 63EJ 6EJ 117PEJ在构架C点承受载荷A 20kN.①绘立柱AB的内力图;②找出危险截面,校核立柱强度;—图精品资料,欢迎大家下载!B面为了20cm 30cm 的矩形.试求其危险截面上的最大正应力.解: R A 25 2.4/3.6 16.6667 KNN = 25 KN0 10-9 IH10-9图示起重结构,A 及B 处可作皎链支承看待, G D 与E 均用销钉连结.AB 柱的截M max 25 1 03 2.4i^^^x16.667 2.4 10320 KN mA 0.2 0.3 0.06 M 26 0.2 0.32 W ----- 0.003M 2杆的总重 P 及倾角 .试确定自A 点至由于杆自重产生最3斗~ 7.0830.003M Pa10-10有一等直实心圆杆, 其B 端为了皎支承,A 端靠在光滑 的竖直墙面上(摩擦力可略如图示.杆长L,杆截面直径d,N M A W325 10 0.06K 10-8 ffl240c EDm精品资料,欢迎大家下载!大压应力的横截面之距离 S .解:设杆的自重为了 q (N/M) 轴向分量:q sin 横向分量: q cos R A q l cos 2sin1 ql cot在S 截面:NR A cos sin M(s)(R A sin2(qd dscos q sin1 2q cot sinl_ 28 cot 0 l _ 2i tanIql cot cos q 2 S 21 2qsin1ql cot sin cos sincos sin10-11某厂房柱子,受到吊车梁的铅垂轮压 P= 220 kN,屋架传给柱顶的水平力 Q =8 kN ,及风载荷 q= 1kN/m 的作用.P 力作用线离柱的轴线距离 e=,柱子底部截面为了矩形,尺寸为了 试计算柱子底部危险点的应力. N P 220 KN … 1 9 52M max 220 0.4 8 9.5 57.129 2N M 220 103 57.129 103 6A W 1 0.3 0.3 12解: KN m 0.41 1.876MPa2s1q cos S 2■ lO'll RP=22QkN度.解:P Peb A bh26 103一 - _ 3 _ _ 26 6 103 6 10 2_ 42 3 102 32 10 6130 106 Pa 130MPa尺寸单位十mm期10-12图LW 一, ■ ■:A 10-13 图10-13轮船上救生艇的吊杆尺寸及受力情况如图示, 图中载荷班包含救生艇自重及被解:N 18 KNM 18 1.5 27 KN mN M 318 103_ _ 3 27 103A WW 10 4Q160. 7 5救人员重量在内.试求其固定端A-A截面上的最大应力.MPa3210-14正方形截面拉杆受拉力P= 90kN作用,a = 5cm,如在杆的根部挖去1 /4如图示.试求杆内最大拉应力之值.解:2 .2a ——a2形心位置:e --------------2—— 1.179 cm3 a4a 2 2J z 2 a e12 122 2a ——a2364.6 4cm解:1 旦 6Pe E E bh bh 2211 P 6Pe ~ 2- EE bh bh1 2P E bh 1 12Pe E bh 12Pe bh2 6 2P h bhP Pe (V e )90 103maxA —J —3 52 10 4322 5(90 1031.179 10 2)( ------------- 1.179) 10364.6 10 825.72 106Pa 25.72MPa10-15承受偏心拉伸的矩形截面杆如图示, 今用电测法测得该杆上、下两侧面的纵向应变1和2.试证明偏心距e 在与应变1, 2在弹性范围内满足以下关系式10-16图示正方形截面折杆: 外力P 通过A 和B 截面的形心.假设P= 10kN,正方形 截面边长a =60 mm .试求杆内横截面上的最大正应力.解: BC 杆C 截面:AC 杆C 截面:cos8KNM (P cos )0.6 10 0.8——0.6 4.8KN m1N6Mmax3 A a 3N P sin 10 10 M (P cos )0.63 016KN 110 08 0.6 4.8KN m1 max36 1034103------ . ----- 135 106Pa 135MPa 216 10iV10-17试确定图示T字形截面的核心边界.图中y、z两轴为了截面形心主惯轴.解:e yz.i z e zz.i za z a z zi y 60 403 340 9012 1260 40 一 - 一一290 40 458.33cmz .i z _ _ _340 603122302 (40 60)_ _ _ 390 40312_ 2202 (40 90) 60 40 90 40(4)(5)2800cm800e ye ye ze ze ye z2040800cm a z60458.3345458.334580013.33 cm108458.334510.18510.1857.410.185cmcma ze ye ye z 0e y 7.4e z 10.185解:y z y 1 J y 10-18材料为了灰铸铁 HT15— 33的压力机框架如图示.许用拉应力 []=30MPa 许用压应力[]=80 MPa .试校核框架立柱的强度. (2 10) 1 (2 6) 5 (2 5) 9 ------- ------ ------ ------- ------ ---- 4.05cm10 5.95cm 10 23 12(2 ____ 4487.9cmMZ 2T y M z_____Z1云2 A 42cm 10) 3.052312 1042 10 42.86 1062.893 2 6 0.952 12 210 4.05 10 487.9 10 8322.89 10 5.95 108487.9 10已J 10 4.9521226.85MPa32.38MPa10-19电动机功率 4,转速n =800r/m .皮带轮直径 A 250mm 重量 E 700N,皮带拉fig 10-19 图力为了T i, T2 (T i = 2T2),轴的外伸端长L=120mm轴材料的许用应力[ 100MPa试按第四强度理论设计电动机轴的直径d.解:M n T1 T2 D 竺9.55 N n 9.55 8830.1054 KN800T2 2 0.1054 0.843KN0.252 2 3?2cos45 G 3T2 cos45, 3.3 84370023 3432xd3064N3.064KNR l 3.064 0.12M 2 0.75M n2W z2 2M 0.75M n3 3.79 323------------- 3.38cm0.368KN m,'0.3682 0.75 0.10542 106100 1060.379 1010-20直径为了60cm的两个相同皮带轮,n= 100 r /m时传递功率N=, C轮上皮带是水[]=80MPa,试平的,D轮上是铅垂方向的.皮带拉力T2= kN , T1>T2,设轴材料许用应力® 10^20 图根据第三强度理论选择轴的直径,皮带轮的自重略去不计.M B T 1 T 20.25 5.343 0.25 1.336KN m_ 22M D .1.4252 0.4452 1.493KN m一 2_ _ 2 - 226 M D M n . 1.49320.7032 106320.63cm 解:M n R 色 5 0.15 0.75KN mN 7.36M n 9.559.55 —n 100T 1_ D _ T 2 M n20.7029KN m1.52 0.70290.63.843KN80 106 d 3 32W z 3 32 20.635.95cm10-21图示钢制圆轴上有两个齿轮,齿轮 C 上作用着铅垂切向力 P = 5kN,齿轮D 上作解用着水平切向力 P 2 = 10 kN .假设] :=100 MPa,齿轮C 的节圆直径 d C =30cm 齿轮D 的节圆直径d D= 15cmo 试用第四强度理论选择轴的直径..1.1252 0.187序0.75 0.752 1063 v13125cm3100 106ch 3 32W z 32 13.1255.11cmW z 2 .0.56252 0.3752 0.75 0.752 1 06100 106____ 39.375cm34.57 cm10-22某型水轮机主轴的示意图如下图. 水轮机的输出功率为了NH 37500kW 转速n= 150r /作轴向推力R = 4800kN,转轮重W= 390kN;主轴的内径d= 34cm,外径 A 75cm,自重W=285kN.主轴材料为了45钢,其许用应力为了[]=80 MPa.试按第四强度理论校核主轴的强度.解:37500M n 9.55 2387.5KN m150N P y W c W 4800 390 285 5475KNd23 N 5475 10 15.6A 0.351.2 3 2.15.62 3 30.12 54.4MPa10-23图为了某精密磨床砂轮轴的示意图.电动机功率 4 3 kW转子转速n= 1400 r/m,转子重量Q= 101NL砂轮直径D= 250 mm砂轮重量Q= 275 kN.磨削力P y: P z3:1, 砂轮轴直径d= 50m,材料为了轴承钢,[]=60MPa (1)试用单元体表示出危险点的应力解:M n9.55N9.55 0.02046 KN m 20.46N mn 1400DP z M n2P z 2M n 2 20.46163.68NW pD2 d20.7520.342 2------------------ 0.351m2£l a41630~^ 1 0.4534 0.0793m316M nw p32387.5 100.079330.1MPaxd4题10-23图状态,并求出主应力和最大剪应力;( 2)试用第三强度理论校核轴的强度.砂轮P y 3P z 491.04N显然:P y 、P z 、Q i 和Q 2相较均可以忽略不计. 故 M 275 1000 0.13 35750N m11 ax35750 35750 32 - 2913MPa 0.05解:m-m M n P 0.17 50 0.17 8.5KN mM P(160 90) 10 3 12.5KN mn-n: M n P 90 10 3 4.5KN m7KN mmax题10«24图及臂矩形截面 32 .. M n 2 M 2xd 33d328.52 12.52 1060.12389.1MPa10-24曲柄臂尺寸如图示,假设 P= 50 kN, [ : = 90 MPa,试按第三强度理论对 mmn - n 截面进行校核.h 150 a 0.2492.14(b 700.793虹 0 794^__ ab 2h0.249 15 72 10,26.6672 4 19.422 47.11MPa10-25图示传动轴左端伞形齿轮C 上所受的轴向力 R=kN ,周向力P 2=,径向力 R=.右端齿轮D 上所受的周向力P 2' 144.9kN ,径向力P 3' 52.8kN ,假设d =8cm, [ ]=300MPa, 试按第四强度理论对轴进行校核.M W Z7 103 7 15226.667MPa10解:19.42MPaxd 3M max12.17162 N M max_24.43522316.5 10312.95KN m 312.59 103maxA W z20.082 一一30.083432M n M p3.283 257.63 260.92MPa4xd3.913 103 —0.083 1638.92MPa260.922 3 38.922 269.48MPa10-26正方形截面的半圆形杆,一端固定一端自由,作用力垂直干半圆平面.其受力和尺寸如下图.试按第三强度理论求 B 、C 截面上危险点的相当应力.以上资料仅供参考,如有侵权,留言删除!B 0_l /\l t 7cxl t n cxl r cxl CXI e p xS I A I CXI r:OL9E LD寸£君.6008 N pxE 09L 9ln r co 80CXI .0%艺SIAI 91000OL9L9IO 乜cxll .o osdlAI寸寸寸05SIAI9N §E N X CXI O CXI Ob-E Nxz.0 BO10, 6 64 133.3 10 135.6 10 Pa 135.6MPa36 10 4以上资料仅供参考,如有侵权,留言删除!。
土木工程材料习题集(填空选择判断)第一章材料的基本性质一、填空1、当材料的体积密度与密度相同时,说明该材料________。
2、材料的耐水性用_______表示。
3、对于开口微孔材料,当其孔隙率增大时,材料的密度_______(变大/变小/不变)。
4、软化系数大于____材料认为是耐水的。
5、对于开口微孔材料,当其孔隙率增大时,材料的吸水性_______(增强/减弱/不变)。
6、评价材料是否轻质高强的指标为_____。
7、对于开口微孔材料,当其孔隙率增大时,材料抗冻性 _____ (升高/降低/不变)。
8、脆性材料最宜承受____ (拉/压)力。
9、材料的亲水性与憎水性用______来表示。
10、当材料的孔隙率一定时,孔隙尺寸愈小,保温性能愈____(好/差)。
11、材料的吸湿性用_______来表示。
12、材料的弹性模量反映材料的________的能力。
13、含水率为1%的湿砂202克,其中含水为克。
14、材料的强度的确定视材料的种类的不同面而不同,对于韧性材料是以_________作为指标的。
15、选择建筑物围护结构的材料时,应选用导热系数较____(大/小)的材料,保证良好的室内气候环境。
16、材料的强度的确定视材料的种类的不同面而不同,对于脆性材料是以作为强度的。
17、保温隔热材料应选择导热系数____(大/小)的材料。
18、一般来说,材料含水时比其于燥时的强度 ______(高/低)。
19、比强度是衡量材料_________的指标。
20、材料的开口孔隙率越大,则材料的吸声性越____(好/差)。
三、判断1、对于任何一种材料,其密度都大于其体积密度。
()2、将某种含孔材料分别置于不同的环境中,所测得密度值中以干燥状态下的密度值最小。
()3、材料的含水率越高,其表观密度越大。
()4、具有粗大或封闭孔隙的材料,其吸水率小,而具有细小或连通孔隙的材料吸水率大。
()5、材料的孔隙率越大,吸水率越高。
10-1. 某型柴油机的挺杆长为l =257mm ,圆形横截面的直径d=8mm 。
钢材的
E=210GPa ,σp =240MPa 。
挺杆承受的最大压力P=1.76kN 。
规定n st =2~5。
试校核挺杆的稳定性。
解:(1)求挺杆的柔度
挺杆的横截面为圆形,两端可简化为铰支座,μ=1,i=d/4 计算柔度
1
1 9.925.1284λλσπλμμλ ∴=====
P
E
d l i
l
挺杆是细长压杆,用欧拉公式计算临界压力 (2)校核挺杆的稳定性
()
KN l EI P d I cr 31.6 642
24===μππ 工作安全系数
58.3max
==
P P n cr
所以挺杆满足稳定性要求。
10-5. 三根圆截面压杆,直径均为d=160mm 材料为Q235钢,E=200GPa ,
σp =200MPa ,σs =240MPa 。
三杆均为两端铰支,长度分别为l 1、l 2和l 3,且l 1=2l 2=4l 3=5m 。
试求各杆的临界压力P cr 。
解:(1)求柔度极限值
查表得Q235钢:a = 304MPa, b = 1.12MPa
573.9921=-=
==b
a E
S
P
σλσπλ
(2)求各杆的临界压力Pcr
1杆:
()
KN l EI P d I d l i l cr l 2540 641254
/12
2
1411
11==∴==⨯==
μππλμλ 2杆:
KN
A P MPa b a i
l cr cr cr l l 4705 2345
.6221
222
2===-=∴==σλσλλλμλ
3杆:
KN
A P i
l S cr l 482525.3132
3
3==∴==σλμλ 10-7. 无缝钢管厂的穿孔顶杆如图所示。
杆长l =4.5m ,横截面直径d=150mm ,材
料为低合金钢,E=210GPa ,σp =200MPa 。
两端可简化为铰支座,规定n st =3.3。
试求顶杆的许可压力。
解:(1
()
KN l EI P d I d l i l E
cr P
5.254341204/18.1012
241
1===
=⨯====μππλμλσπ
λ (2)求顶杆的许可压力
kN n P P st
cr
8.770][==
10-9. 在图示铰接杆系中,AB 和BC 皆为细长压杆,且截面相同,材料一样。
若
杆系因在ABC 平面内丧失稳定而同时失效,并规定0<θ<π/2,试确定P 为最大值时的角。
P
解:由铰B 的平衡可得
θtg P P 12=
由已知条件可知,
1
21212112=====μμβI I E E tg l l
AB 和BC 皆为细长压杆
2
2
222121 l EI P l EI P cr cr ππ== 欲使P 为最大值,则两杆需同时达到临界值,即
)
()(222
211212βθβθθ
ctg arctg ctg l l tg P P tg P P cr cr cr cr =∴==== 10-12. 蒸汽机车的连杆如图所示。
截面 为工字形,材料为Q235钢,λ1=100,
连杆承受的最大轴向压力为465 kN 。
连杆在摆动平面(xy 平面)内发生弯曲时,两端可认为铰支;而在与摆动平面垂直的xz 平面内发生弯曲时,两端可认为是固定支座。
试确定其工作安全系数。
解:(1)计算截面的几何性质
y
y
mm A
I i mm A
I i mm I mm I mm A z
z y y z y 52 2517755479 4055040 64704
42==
==
===
xy 平面和xz 平面内的柔度值
62025
.01
.35.06.59052.01
.312211=⨯==
=⨯==y xz z xy i l i l μλμλ
连杆容易在xz 平面内失稳 对于Q235钢
1
22s 6
.61235 12.1 304λλλσλσ xz s b
a MPa
MPa b MPa a ∴=-====
连杆为中长杆,用直线公式计算临界压力
()KN A b a A P xz cr cr 6.1517=-==λσ
工作安全系数
26.3465
6.1517max ===P P n cr
10-15. 某厂自制简易起重机如图所示。
压杆BD 为20号槽钢,材料为Q235钢,
λ1=100,λ2=62。
起重机的最大起重量P=40kN 。
若规定n st =5,试校核BD 杆的稳定性。
解:(1)受力分析
以梁AC 为研究对象,由静力平衡方程可求得
kN N BD 7.106=
(2)BD 压杆的柔度
查型钢表,20号槽钢:
P
1
204
287
.82732.130cos /5.1 ,1144 09.2 837.32λλλμλμ ∴========y
y y i l m
l cm I cm i cm A
BD 杆为中长杆 (3)计算临界压力
()KN A b a A P cr cr 5.693=-==λσ
(4)稳定性校核
st BD
cr
n N P n 5.6==
满足稳定要求。