材料力学第2版 课后习题答案 第11章 组合变形时的强度计算
- 格式:pdf
- 大小:467.88 KB
- 文档页数:22
11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1) 画梁的弯矩图(2) 最大弯矩(位于固定端):max 7.5 M kN =(3) 计算应力: 最大应力:K 点的应力:11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。
试求梁内的最大弯曲拉应力与最大弯曲压应力。
解:(1) 查表得截面的几何性质:4020.3 79 176 z y mm b mm I cm ===(2) 最大弯曲拉应力(发生在下边缘点处)()30max880(7920.3)10 2.67 17610x M b y MPa I σ-+-⋅-⨯-⨯===⨯6max max max227.510176 408066ZM M MPa bh W σ⨯====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯x M1zM M z(3) 最大弯曲压应力(发生在上边缘点处)30max88020.3100.92 17610x M y MPa I σ---⋅⨯⨯===⨯ 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。
解:(1) 求支反力31 44A B R qa R qa ==(2) 画内力图(3) 由胡克定律求得截面C 下边缘点的拉应力为:49max 3.010******* C E MPa σε+-=⋅=⨯⨯⨯=也可以表达为:2max4C C z zqa MW W σ+== (4) 梁内的最大弯曲正应力:2maxmax max 993267.5 8C zz qa M MPa W W σσ+====qxxF SM11-14 图示槽形截面悬臂梁,F =10 kN ,M e =70 kNm ,许用拉应力[σ+]=35 MPa ,许用压应力[σ-]=120 MPa ,试校核梁的强度。
习 题2-1 一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量51010.0⨯=E MPa .如不计柱自重,试求:(1)作轴力图; (2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4) 柱的总变形.解:(1) 轴力图(2) AC 段应力a a MP P σ5.2105.22.010100623-=⨯-=⨯-=CB 段应力a a MP P σ5.6105.62.010260623-=⨯-=⨯-=(3) AC 段线应变45105.2101.05.2-⨯-=⨯-==E σε N-图 CB 段线应变45105.6101.05.6-⨯-=⨯-==E σε (4) 总变形 m 3441035.15.1105.65.1105.2---⨯=⨯⨯-⨯⨯-=AB ∆2-2 图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7 kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(2)a MP σ4.194101024.015.0767311=⨯⨯⨯⨯⨯=- a MP σ1.311101025.015.0767322=⨯⨯⨯⨯⨯=-a MP σ9.388101026.015.07673=⨯⨯⨯⨯=- 最大拉应力a MP σσ9.3883max ==2-3 直径为1cm 的圆杆,在拉力P =10 kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为α=30o 的斜截面上的正应力与剪应力。
解:(1) 最大剪应力a d MP ππP στ66.6310101102212672241max =⨯⨯⨯⨯===- (2)︒=30α界面上的应力()a MP ασσα49.952366.632cos 12=⨯=+= a MP αστα13.5530sin 66.632sin 2=⨯=⨯=︒ 2-4 图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
第十一章能量要领之阳早格格创做第十一章问案图示桁架各杆的资料相共,截里里积相等.试供正在F 力效率下,桁架的变形能.估计图示各杆的应变能.传动轴受力情况如图所示.轴的直径为40mm ,资料为45钢,E = 210GPa ,G = 80GPa.由扭转引起的应变能: 由蜿蜒引起的应变能:估计图示梁的应变能,并证明是可谦脚叠加本理及其本果.而没有谦脚叠加本理,果为应变能取内力的闭系没有是线性的.借帮于附录E ,供跨度中面(睹课本下册p40例12-4)11.6 图示刚刚架的各杆的EI 皆相等,试供截里A 、B 的位移战截里C 的转角.(a)A 面:正在A 面加一个背下的单位力.M (x 1)=0, M (x 2)=Fx 2, M (x 3)=FbC 面:正在C 加一个顺时针的力奇矩为1的单位力奇(b) A 面:正在A面加一个背下的单位力B 面:正在B 面加一个背左的单位力图示桁架各杆的资料相共,截里里积相等C 处的火仄位移战笔直位移.CF BAR火仄位移:(122) 3.828Fl FlEA EA +=-=-.笔直位移:Fl EA ∆=-.2,E 索 = 177GPa.F = 20kN ,(a)假设横梁ABCD 为刚刚体,供C 面的笔直位移.(2)若没有把ABCD 假设为刚刚体,且已知其抗直刚刚度为EI 2,试再供C 面的笔直位移.(1)42110.87.891033F EA -⎛⎫∆=⨯=⨯ ⎪⎝⎭m.(2)20.44047.89102Fx dx EI -∆=⨯+⎰4447.8910 1.48109.3710---=⨯+⨯=⨯m.11.9 等截里直杆BC 的轴线为四分之三的圆周.若AB 杆可视为刚刚性杆,试供正在F 力效率下,截里B 的火仄位移及笔直位移.火仄位移:M ()=FR cos, ()sin M R θθ=33320sin cos 2FR FRd EI EI πθθθ∆==⎰.D CFAB60 ° 60 ° 800 400400RFO B BF ORA F笔直位移:()(1cos )M R θθ=--33.36FR EI =.11.10 图示圆弧形小直率杆,仄衡半径为R .力F笔直于圆环中线地圆的仄里.试供二个F 力效率面的相对于线位移.M ()=FR sin, ()sin M R θθ= T ()=FR (1-cos), ()(1cos )T R θθ=-333pFR FR EI GI ππ=+.11.11图示圆弧形小直率杆,仄衡半径为R .正在横截里A 取B 处受一对于集结力F 效率.力F 正在圆环中线地圆的仄里内.试供二个F 力效率面的相对于线位移. M ()=FR sin,()sin M R θθ=32320sin FR FRd EI EI πθπθ∆==⎰.11.12图示轴线为火仄里内四分之一圆周的直杆,正在自由端B 效率笔直荷载F ,设EI 战GI P 为已知,试供正在F 力效率下端里B 的笔直位移.F O O Rθ B F AM ()=FR sin, ()sin M R θθ= T ()=FR (1-cos), ()(1cos )T R θθ=- 33(38)44pFR FR EI GI ππ-=+.。
复合材料力学答案【篇一:材料力学】教程第二版 pdf格式下载单辉祖主编本书是单辉祖主编《材料力学教程》的第2版。
是根据高等工业院校《材料力学教学基本要求》修订而成。
可作为一般高等工业院校中、少学时类材料力学课程的教材,也可作为多学时类材料力学课程基本部分的教材,还可供有关工程技术人员参考。
内容简介回到顶部↑本教村是普通高等教育“十五”国家级规划教材。
. 本教材仍保持第一版模块式的特点,由《材料力学(Ⅰ)》与《材料力学(Ⅱ)》两部分组成。
《材料力学(Ⅰ)》包括材料力学的基本部分,涉及杆件变形的基本形式与组合形式,涵盖强度、刚度与稳定性问题。
《材料力学(Ⅱ)》包括材料力学的加深与扩展部分。
本书为《材料力学(Ⅱ)》,包括非对称弯曲与特殊梁能量法(二)、能量法(二)、静不定问题分析、杆与杆系分析的计算机方法、应力分析的实验方法、疲劳与断裂以及考虑材料塑性的强度计算等八章。
各章均附有复匀题与习题,个别章还安排了利用计算机解题的作业。
..与第一版相同,本教材具有论述严谨、文字精炼、重视基础与应用、重视学生能力培养、专业面宽与教学适用性强等特点,而且,在选材与论述上,特别注意与近代力学的发展相适应。
本教材可作为高等学校工科本科多学时类材料力学课程教材,也可供高职高专、成人高校师生以及工程技术人员参考。
以本教材为主教材的相关教学资源,尚有《材料力学课堂教学多媒体课件与教学参考》、《材料力学学习指导书》、《材料力学网上作业与查询系统》与《材料力学网络课程》等。
...作译者回到顶部↑本书提供作译者介绍单辉祖,北京航空航天大学教。
1953年毕业于华东航空学院飞机结构专业,1954年在北京航空学院飞机结构专业研究生班学习。
1992—1993年,在美国特拉华大学复合材料中心.从事合作研究。
.历任教育部工科力学教材编审委员、国家教委工科力学课程指导委员会委员、中国力学学会教育工作委员会副主任委员、北京航空航天大学校务委员会委员、校学科评审组成员与校教学指导委员会委员等。
第十一章 能量方法第十一章答案11、1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2N N F F F ==32N F F = 2222222()2222N F F l l F x V dx EA EA EA ε⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭==+⎰2234F l EA=、11、2计算图示各杆的应变能。
(a) 2223244F l F l F l V EA EA EAε=+=、 (b) 2212/32/3120022e e l l M M x x l l V dx dx EI EIε⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l e e M M l x x EIl EI ⎛⎫⎛⎫⎛⎫ ⎪=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭、11、3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa ,G = 80GPa 。
试计算轴的应变能。
由扭转引起的应变能:20.220800.0322pV dx GI ε==⎰由弯曲引起的应变能:20.210(531.4)20.0292x V dx EIε==⎰120.061J V V V εεε=+=、11、4 计算图示梁的应变能,并说明就是否满足叠加原理及其原因。
2230()26lFl Fx F lV dx EI EIε-==⎰而22310()22l Fl F lV dx EI EIε==⎰22320()26lFx F l V dx EI EIε-==⎰、不满足叠加原理,因为应变能与内力的关系不就是线性的。
、0、36kN(b)1kN200200 EIMe=FlFlx11、5在外伸梁的自由端作用力偶矩中点C 的挠度w c 。
(见课本下册p40例12-4)11、6 图示刚架的各杆的EI 皆相等,试求截面A 、B 的位移与截面C 的转角。
(a) A 点:在A 点加一个向下的单位力。
M (x 1)=0, M (x 2)=Fx 2, M (x 3)=Fb11()M x x =,22()M x Fx =,3()0M x = 3330()()h M x M x Fabhdx EI EI∆==-⎰、C 点:在C 加一个逆时针的力偶矩为1的单位力偶。
材料力学答案第十一章仅供学习与交流,如有侵权请联系网站删除 谢谢50第十一章 能量方法第十一章答案11.1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2N N F F F == 32N F F = 222222()2222N F F l l F x V dx EA EA EA ε⎫⎛⎫⎪ ⎪⎝⎭⎝⎭==+⎰2234F l EA=.11.2计算图示各杆的应变能。
(a)仅供学习与交流,如有侵权请联系网站删除 谢谢512223244F l F l F l V EA EA EAε=+=.(b) 2212/32/3120022e e l l M M x x l l V dx dx EI EIε⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l ee M M l x x EIl EI ⎛⎫⎛⎫⎛⎫ ⎪=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11.3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa ,G = 80GPa 。
试计算轴的应变能。
由扭转引起的应变能:20.220800.0322pV dx GI ε==⎰由弯曲引起的应变能:20.210(531.4)20.0292x V dx EIε==⎰120.061J V V V εεε=+=.11.4 计算图示梁的应变能,并说明是否满足叠加原理及其原因。
2230()26lFl Fx F l V dx EI EIε-==⎰0.08kN· 0.36kN (b) 1kN 2000200EIMe=FlFlx仅供学习与交流,如有侵权请联系网站删除 谢谢52而22310()22lFl F l V dx EI EIε==⎰22320()26lFx F l V dx EI EIε-==⎰.不满足叠加原理,因为应变能与内力的关系不是线性的。
11.5在外伸梁的自由端作用力偶矩M跨度中点C 的挠度w c 。