第11章材料力学弯曲应力练习题
- 格式:ppt
- 大小:133.01 KB
- 文档页数:12
材料力学作业册学院:专业:年级:班级:学号:姓名:前言本作业题册是为适应当前我校教学特色而统一筛选出来的题集,入选题目共计72个,教师可根据学时情况有选择性的布置作业。
本题册中列出的题目仅是学习课程的最基本的作业要求,老师根据情况可适当增加部分作业,部分学生如果有考研或者其他方面更高的学习要求,请继续训练其他题目。
本题册仅用于学生课程训练之练习,任何人不得将其用于商业目的,违者将追究其法律责任。
由于时间仓促,并限于编者水平有限,缺点和错误在所难免,恳请大家提出修改建议。
王钦亭wangqt@ 2013年2月27日目录第一章绪论 (1)第二章拉伸与压缩 (2)第三章扭转 (7)第四章弯曲应力 (11)第五章弯曲变形 (18)第六章简单超静定问题 (20)第七章应力状态与强度理论 (25)第八章组合变形与连接件计算 (32)第九章压杆稳定 (36)第十章能量法 (41)第十一章动荷载.交变应力 (49)附录I 截面的几何性质 (53)第一章绪论1-1 材料力学的中所讲的构件失效是指哪三方面的失效?1-2 可变形固体的基本假设有哪些?1-3 材料力学中研究的“杆”,有什么样的几何特征?1-4 材料力学中,杆件的基本变形有哪些?第二章 拉伸与压缩2-1(SXFV5-2-1)试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
2-2(SXFV5-2-2)一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为2f kx (k 为常数),试作木桩的轴力图。
A2-3(SXFV5-2-3)石砌桥墩的墩身高=10 m l ,其横截面尺寸如图所示。
荷载 1 000 kN F =,材料的密度33=2.3510 kg/m ρ⨯。
试求墩身底部横截面上的压应力。
2-4(SXFV5-2-6)一木桩受力如图所示。
柱的横截面为边长200 mm 的正方形,材料可认为符合胡克定律,其纵向弹性模量10 GPa E =。
如不计柱的自重,试求: (1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4)柱端A 的位移。
材料⼒学专项习题练习弯曲应⼒弯曲应⼒1. 圆形截⾯简⽀梁A 、B 套成,A 、B 层间不计摩擦,材料的弹性模量2B A E E =。
求在外⼒偶矩e M 作⽤下,A 、B 中最⼤正应⼒的⽐值maxminA B σσ有4个答案: (A)16; (B)14; (C)18; (D)110。
答:B2. 矩形截⾯纯弯梁,材料的抗拉弹性模量t E ⼤于材料的抗压弹性模量c E ,则正应⼒在截⾯上的分布图有以下4种答案:答:C3. 将厚度为2 mm 的钢板尺与⼀曲⾯密实接触,已知测得钢尺点A 处的应变为11000-,则该曲⾯在点A 处的曲率半径为 mm 。
答:999 mm4. 边长为a 的正⽅形截⾯梁,按图⽰两种不同形式放置,在相同弯矩作⽤下,两者最⼤正应⼒之⽐max a max b ()()σσ= 。
答:2/15. ⼀⼯字截⾯梁,截⾯尺⼨如图,, 10h b b t ==。
试证明,此梁上,下翼缘承担的弯矩约为截⾯上总弯矩的88%。
证:412, (d ) 1 8203B A z z zMy M Mt M y yb y I I I σ==?=?? 4690z I t =, 41411 82088%3690M t M t =??≈B t A M =+=为翼缘弯矩(a)6. 直径20 mm d =的圆截⾯钢梁受⼒如图,已知弹性模量200 GPa E =, 200 mm a =,欲将其中段AB 弯成 m ρ=12的圆弧,试求所需载荷,并计算最⼤弯曲正应⼒。
解:1M EIρ= ⽽M Fa = 4840.78510 m , 0.654 kN 64d EI I F aπρ-==?==33max 80.654100.220102220.78510M d Fad I I σ--====??7. 钢筋横截⾯积为A ,密度为ρ,放在刚性平⾯上,⼀端加⼒F ,提起钢筋离开地⾯长度/3l 。
试问F解:截⾯C 曲率为零2(/3)0, 326C Fl gA l gAlM F ρρ=-==8. 矩形截⾯钢条长l ,总重为F ,放在刚性⽔平⾯上,在钢条A 端作⽤/3F 向上的拉⼒时,试求钢条内最⼤正应⼒。
弯曲变形1. 已知梁的弯曲刚度EI为常数,今欲使梁的挠曲线在x=l/3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2;(B) M e1/M e2=3;(C) M e1/M e2=1/2;(D) M e1/M e2=1/3。
答:C2. 外伸梁受载荷如图示,其挠曲线的大致形状有下列(A)、(B)、(C),(D)四种:答:B3. 简支梁受载荷并取坐标系如图示,则弯矩M、剪力F S与分布载荷q之间的关系以及挠曲线近似微分方程为:(A)2SS2dd d(),,d d dFM w M xF qx x x EI===;(B)2SS2dd d(),,d d dFM w M xF qx x x EI=-=-=;(C)2SS2dd d(),,d d dFM w M xF qx x x EI=-==-;(D)2SS2dd d(),,d d dFM w M xF qx x x EI==-=-。
答:B4. 弯曲刚度为EI的悬臂梁受载荷如图示,自由端的挠度23e32BM lFlwEI EI=+(↓)则截面C处挠度为:(A)32e223323MFl lEI EI⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭(↓);(B)322/323323F Fll lEI EI⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭(↓);(C)32e(/3)223323M FlFl lEI EI+⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭(↓);(D)32e(/3)223323M FlFl lEI EI-⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭(↓)。
答:C5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。
答:6. 试画出图示梁的挠曲线大致形状。
答:7. 正方形截面梁分别按(a)、(b)两种形式放置,则两者间的弯曲刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。
答:C8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。
(A)(B)(C)(D)弯曲应力1. 圆形截面简支梁A,B套成,A,B层间不计摩擦,材料的弹性模量2B AE E=。
求在外力偶矩e M作用下,A,B中最大正应力的比值maxminABσσ有4个答案:(A)16; (B)14;(C)18; (D)110。
答:B2. 矩形截面纯弯梁,材料的抗拉弹性模量tE大于材料的抗压弹性模量cE,则正应力在截面上的分布图有以下4种答案:答:C3. 将厚度为2 mm的钢板尺与一曲面密实接触,已知测得钢尺点A处的应变为11000-,则该曲面在点A处的曲率半径为mm。
答:999 mm4. 边长为a的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大正应力之比max amax b()()σσ=。
(a)(b)答:2/15. 一工字截面梁,截面尺寸如图,, 10h b b t ==。
试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%。
证:412, (d ) 1 8203BA z z zMy M Mt M y yb y I I I σ==⨯=⨯⎰4690z I t=41411 82088%3690M t M t=⨯⨯≈ 其中:积分限1 , 22h h B t A M =+=为翼缘弯矩6. 直径20 mm d =的圆截面钢梁受力如图,已知弹性模量200 GPa E =, 200 mm a =,欲将其中段AB 弯成 m ρ=12的圆弧,试解:1MEIρ=而M Fa =4840.78510 m , 0.654 kN 64d EII F aπρ-==⨯==33max80.654100.22010167 MPa 2220.78510M d Fad I I σ--⋅⨯⨯⨯⨯====⨯⨯ 7. 钢筋横截面积为A ,密度为 ρ,放在刚性平面上,一端加力F ,提起钢筋离开地面长度3l解:截面C 曲率为零2(/3)0, 326C Fl gA l gAl M F ρρ=-==8. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用3F解:在截面C 处, 有 10C M EIρ==2()2 0, 323AC C AC AC l F F lM l l l =⨯-⨯==即AC段可视为受均布载荷q 作用的简支梁2maxmax 22()/8/63AC M q l FlWbt bt σ===9. 图示组合梁由正方形的铝管和正方形钢杆套成,在两端用刚性平板牢固联接。