概率与数理统计第8章 假设检验与方差分析
- 格式:doc
- 大小:192.00 KB
- 文档页数:8
概率与统计中的假设检验和方差分析统计学是研究数据收集、分析和解释的科学。
在统计学的研究中,假设检验和方差分析是两个重要的工具。
本文将对这两个概念进行详细介绍,并探讨它们在实际问题中的应用。
一、假设检验假设检验是指根据样本数据对总体参数提出的关于总体的假设进行检验的过程。
假设检验主要包括以下几个步骤:1. 提出原假设(H0)和备选假设(H1):原假设是对总体参数的某种陈述,备选假设是对原假设的否定。
例如,假设检验中常见的原假设是总体参数等于某个特定值,备选假设是总体参数不等于该特定值。
2. 选择检验统计量:检验统计量是根据样本数据计算的统计量,用于衡量观察到的样本结果与原假设之间的差异。
3. 确定显著性水平(α):显著性水平是在假设检验中指定的判断标准,通常取0.05或0.01。
当P值(观察到的统计量发生的概率)小于显著性水平时,拒绝原假设,否则接受原假设。
4. 进行假设检验:根据选择的检验统计量,计算其观察值,并与理论上的检验统计量分布进行比较,得出拒绝或接受原假设的结论。
假设检验在实际中的应用非常广泛,比如医学研究中对新药物疗效的检验、市场调研中对产品平均销量的检验等。
二、方差分析方差分析是一种用于比较多个总体均值差异是否显著的统计方法。
方差分析的基本思想是将总体的差异分解成不同成分,通过比较成分之间的差异来判断总体均值是否存在差异。
方差分析主要包括以下几个步骤:1. 提出假设:假设要比较的多个总体没有显著差异(H0),备选假设为多个总体之间存在显著差异(H1)。
2. 计算变异程度:将总体的差异分解成组间变异和组内变异两部分。
组间变异是指各个样本均值与总体均值之间的差异,组内变异是指同一样本内各个观测值与样本均值之间的差异。
3. 计算F值:根据组间变异和组内变异的比值计算F值。
F值越大,说明组间差异相对于组内差异的贡献越大。
4. 判断显著性:将计算得到的F值与理论上的F分布进行比较,得出拒绝或接受原假设的结论。
六西格玛绿带:假设检验与方差分析六西格玛绿带:假设检验与方差分析1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10 分)AZ检验BT检验C双样本t检验D成对数据t检验正确答案:A多选题1、基础统计学中的描述性统计可以分为(10 分)A图表法B参数估计C数量表示法D假设检验正确答案:A C2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10 分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B3、在假设检验中,按P值进行决策规则,下列说法正确的是(10 分)A将检验统计量的值与α水平的临界值进行比较。
B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。
C反映实际观测到的数据与原假设之间不一致的程度。
D被称为观察到的(或实测的)显著性水平。
正确答案:B C D4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10 分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10 分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D判断题1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。
(10 分)A正确B错误正确答案:错误2、在假设检验中,原假设和备择假设必须设置为一致的。
(10 分)A正确B错误正确答案:错误3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。
(10 分)? A正确B错误正确答案:正确4、均值检验的应用条件是样本含量N较大,或总体标准差已知。
(10分)A正确B错误正确答案:正确。
概率论与数理统计教案-假设检验一、教学目标1. 理解假设检验的基本概念和原理;2. 学会使用假设检验方法对样本数据进行推断;3. 掌握假设检验的类型、步骤和判断准则;4. 能够运用假设检验解决实际问题。
二、教学内容1. 假设检验的基本概念和原理假设检验的定义假设检验的目的是什么假设检验的基本原理2. 假设检验的类型单样本检验双样本检验配对样本检验3. 假设检验的步骤建立假设选择检验统计量确定显著性水平计算检验统计量的值做出判断4. 假设检验的判断准则拒绝域和接受域检验的拒绝准则检验的接受准则5. 假设检验的应用实例应用假设检验解决实际问题实例分析与解答三、教学方法1. 讲授法:讲解假设检验的基本概念、原理、类型、步骤和判断准则;2. 案例分析法:分析实际问题,引导学生运用假设检验方法解决问题;3. 互动教学法:提问、讨论、解答学生提出的问题,促进学生理解和掌握知识;4. 练习法:布置课后作业,让学生巩固所学知识,提高运用能力。
四、教学准备1. 教案、教材、课件等教学资源;2. 投影仪、电脑等教学设备;3. 课后作业及答案。
五、教学过程1. 导入新课:回顾上一节课的内容,引入假设检验的基本概念和原理;2. 讲解假设检验的基本概念和原理,阐述其目的是什么;3. 讲解假设检验的类型,引导学生了解各种类型的假设检验;4. 讲解假设检验的步骤,让学生掌握进行假设检验的方法;5. 讲解假设检验的判断准则,使学生明白如何做出判断;6. 分析实际问题,引导学生运用假设检验方法解决问题;7. 布置课后作业,让学生巩固所学知识;8. 课堂小结,总结本节课的主要内容和知识点。
教学反思:在教学过程中,要注意引导学生理解和掌握假设检验的基本概念、原理和步骤,并通过实际问题让学生学会运用假设检验方法。
要关注学生的学习反馈,及时解答他们提出的问题,提高他们的学习兴趣和积极性。
六、教学评估1. 评估方式:课后作业、课堂练习、小组讨论、个人报告2. 评估内容:学生对假设检验基本概念的理解学生对假设检验类型和步骤的掌握学生对假设检验判断准则的应用学生解决实际问题的能力七、课后作业1. 完成教材后的练习题2. 选择一个实际问题,运用假设检验方法进行分析和解答3. 总结本节课的主要内容和知识点,写下自己的学习心得八、课堂练习1. 例题解析:分析教材中的例题,理解假设检验的步骤和判断准则2. 小组讨论:分组讨论课后作业中的问题,共同解决问题,交流学习心得3. 个人报告:选取一个实际问题,进行假设检验的分析和解题过程报告九、教学拓展1. 假设检验的扩展知识:学习其他类型的假设检验方法,如非参数检验、方差分析等2. 实际应用案例:搜集更多的实际问题,进行假设检验的分析和解答3. 软件操作实践:学习使用统计软件进行假设检验,提高数据分析能力十、教学计划1. 下一节课内容预告:介绍假设检验的扩展知识和实际应用案例2. 学习任务布置:预习下一节课的内容,准备相关问题和建议3. 课后自学计划:鼓励学生自主学习,深入了解假设检验的方法和应用教学反思:在完成本节课的教学后,要关注学生的学习情况,及时解答他们提出的问题,并提供必要的辅导。
第⼋章⽅差分析与回归分析(1)第⼋章⽅差分析与回归分析习题8.1 P3801、在⼀个单因⼦试验中,因⼦A 有三个⽔平,每个⽔平下各重复4次,具体数据如下:试计算误差平⽅和e S 、因⼦A 的平⽅和A 、总平⽅和T ,并指出它们各⾃的⾃由度.2、在⼀个单因⼦试验中,因⼦A 有四个⽔平,每个⽔平下各重复的次数分别为5,7,6,8。
那么误差平⽅和、A 的平⽅和及总平⽅和的⾃由度各是多少?5、⽤4种安眠药在兔⼦⾝上进⾏试验,特选24只健康的兔⼦,随机把它们均分为4组,每组各服⼀种安眠药,安眠时间如下所⽰:在显著⽔平α=习题8.2 P3873、有7种⼈造纤维,每种抽4根测其强度,得每种纤维的平均强度及标准差如下:(1)试问七种纤维强度间有⽆显著性差异(0.05α=)(2)若七种纤维的强度间⽆显著性差异,则给出平均强度的置信⽔平为0.95的置信区间;若各种纤维的强度间有显著差异,请进⼀步在0.05α=下进⾏多重⽐较,并指出那种纤维的平均强度最⼤,同时该种纤维平均强度的置信⽔平为0.95的置信区间。
习题8.3 P3942、在安眠药试验中(见习题8.1.5)中已求得到四个样本⽅差:222212340.02,0.08,0.036,0.1307s s s s ====请⽤Hartley 检验在显著⽔平0.05α=下考察四个总体⽅差是否彼此相等。
习题8.4 P4111、假设回归直线过原点,即⼀元线性回归模型为,1,2,...i i i y x i n βε=+=()()20,,i i E Var εεσ==诸观测值相互独⽴。
(1)写出2,βσ的最⼩⼆乘估计;(2)对给定的0x ,其对应的因变量均值的估计为0y ,求()0Var y 。
3、在回归分析计算中,常对数据进⾏变换1212,,1,...i i i i y c x cy x i n d d --=== 其中()()121122,,0,0c c d d d d >>是适当选取的常数。
第八章 方差分析与回归分析本章前三节研究方差分析,讨论多个正态总体的比较,后两节研究回归分析.讨论两个变量之间的相关关系.§8.1 方差分析8.1.1问题的提出上一章讨论了单个或两个正态总体的假设检验,这里讨论多个正态总体的均值比较问题.通常为了研究某一因素对某项指标的影响情况,将该因素在多种情形下进行抽样检验,作出比较.一般将该因素称为一个因子,所检验的每种情形称为水平.在每个水平下需要考察的指标都分别构成一个总体,比较它们的总体均值是否相等.对每一个总体都分别抽取一个样本,样本容量称为重复数.如果只对一个因子中的多个水平进行比较,称为单因子方差分析,对多个因子的水平进行比较,称为多因子方差分析.本章只进行单因子方差分析.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在此例中,就是要考察饲料对鸡增重的影响,需要比较三种饲料对鸡增肥的作用是否相同.这里,饲料就是一个因子,三种饲料配方就是该因子的三个水平,每种饲料喂养的雏鸡60天后的重量分别构成一个总体,这里共有3个总体,每一个总体抽取样本的重复数都是8,比较这3个总体的均值是否相等. 8.1.2单因子方差分析的统计模型设因子A 有r 个水平A 1 , A 2 , …, A r ,在每个水平下需要考察的指标都构成一个总体,即有r 个总体,分别记为Y 1 , Y 2 , …, Y r ,对每一个总体都分别抽取一个样本,首先考虑重复数相等的情形,设重复数都是m ,总体Y i 的样本Y i 1 , Y i 2 , …, Y im ,i = 1, 2, …, r .作出以下假定:(1)每一个总体都服从正态分布,即r i N Y i i i ,,2,1),,(~2L =σµ;(2)各个总体的方差都相等,即22221r σσσ===L ,都记为σ 2;(3)各个总体及抽取的样本相互独立,即Y ij 相互独立,i = 1, 2, …, r ,j = 1, 2, …, m . 需要比较它们的总体均值是否相等,即检验的原假设与备择假设为H 0:µ 1 = µ 2 = … = µ r vs H 1:µ 1 , µ 2 , …, µ r 不全相等,如果H 0成立,就可以认为这r 个水平下的总体均值相同,称为因子A 不显著;反之,如果H 0不成立,就称为因子A 显著.在水平A i 下的样品Y ij 与该水平下的总体均值µ i 之差ε ij = Y ij − µ i 为随机误差.由于Y ij ~ N (µ i , σ 2 ),因此随机误差ε ij ~ N (0 , σ 2 ).对所有r 个水平下的总体均值求平均,即∑==+++=ri i r r r 1211)(1µµµµµL称为总均值.每个水平A i 下的总体均值µ i 与总均值µ 之差a i = µ i − µ 称为该水平A i 下主效应.显然所有主效应a i 之和等于0,即01=∑=ri ia,检验所有水平下的总体均值是否相等,也就是检验所有主效应a i 是否全等于0.这样单因子方差分析在重复数相等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m j r i a Y ij r i i ij i ij 相互独立,且都服从L L 检验的原假设与备择假设为H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0. 8.1.3平方和分解一.试验数据对于r 个总体下的试验数据Y ij , i = 1, 2, …, r ,j = 1, 2, …, m ,记T i 表示第i 个总体下试验数据总和,⋅i Y 表示第i 个总体下样本均值,n = rm 表示总的样本容量,T 表示总的试验数据总和,Y 表示总的样本均值,即∑==mj ij i Y T 1,∑=⋅==mj ij i i Y m m T Y 11, i = 1, 2, …, r ,∑∑∑=====r i mj ij r i i Y T T 111,∑∑∑=⋅=====ri i r i m j ij Y r Y rm T n Y 111111, 用⋅i Y 作为µ i 的点估计,Y 作为µ 的点估计.又记⋅i ε表示第i 个总体下随机误差平均值,ε表示总的随机误差平均值,即∑=⋅=mj ij i m 11εε, i = 1, 2, …, r ,∑∑∑=⋅====ri i r i m j ij r n 11111εεε.显然有⋅⋅+=i i i Y εµ,εµ+=Y .在单因子方差分析中通常将试验数据及基本计算结果写成表格形式 因子水平试验数据和 和的平方平方和A 1 Y 11 Y 12 … Y 1m T 1 21T∑21jY A 2 Y 21 Y 22 … Y 2m T 2 22T∑22jY┆ ┆ ┆ ┆ ┆ ┆ ┆┆A rY r 1Y r 2…Y rmT r2r T ∑2rjYΣ T∑=ri i T 12∑∑==ri mj ijY112二.组内偏差与组间偏差数据Y ij 与样本总均值Y 之差Y Y ij −称为样本总偏差,可以分成两部分之和:)()(Y Y Y Y Y Y i i ij ij −+−=−⋅⋅,其中⋅⋅⋅−=+−+=−i ij i i ij i i ij Y Y εεεµεµ)()(是第i 个总体内数据与该总体内样本均值的偏差,称为组内偏差,反映第i 个总体内的随机误差;εεεµεµ−+=+−+=−⋅⋅⋅i i i i i a Y Y )()(是第i 个总体内样本均值与总样本均值的偏差,称为组间偏差,反映第i 个总体的主效应. 三.偏差平方和及其自由度在统计学中,对于k 个独立数据Y 1 , Y 2 , …, Y k ,平均值∑==ki i Y k Y 11,称Y i 与Y 之差为偏差,所有偏差的平方和∑=−=ki i Y Y Q 12)(称为这k 个数据的偏差平方和,反映这k 个数据的分散程度.由于所有偏差之和0)(11=−=−∑∑==Y k Y Y Y ki i k i i , 即这k 个偏差由k 个独立数据受到一个约束条件形成,可以证明它们与k − 1个独立(随机)变量可以相互线性表示,称之为等价于k − 1个独立(随机)变量.一般地,若k 个独立数据受到r 个不相关的约束条件,则它们等价于k − r 个独立(随机)变量.在统计学中,把形成平方和的变量所等价的独立变量个数,称为该平方和的自由度,通常记为f .如上述偏差平方和Q 的自由度为k − 1,即f Q = k − 1.由于平方和的大小与变量个数(或自由度)有关,为了对偏差进行比较,通常考虑偏差平方和与其自由度之商,称为均方和,记为MS ,反映一组数据的平均分散程度,如样本方差∑=−−=ni i X X n S 122)(11就是样本数据偏差的均方和. 四.总平方和分解公式总偏差平方和记为S T 或SST ,其自由度记为f T ,有∑∑==−=r i mj ij T Y Y S 112)(,f T = rm − 1 = n − 1;组内偏差平方和记为S e 或SSE ,其自由度记为f e ,有∑∑==⋅−=r i mj i ij e Y Y S 112)(,f e = r (m − 1) = n − r ;组间偏差平方和记为S A 或SSA ,其自由度记为f A ,有∑∑∑=⋅==⋅−=−=ri i r i m j i A Y Y m Y Y S 12112()(,f A = r − 1.组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应.定理 总偏差平方和S T 可以分解为组内偏差平方和S e 与组间偏差平方和S A 之和,其自由度也可作相应的分解,即S T = S e + S A ,f T = f e + f A ,称之为平方和分解公式. 证:∑∑∑∑==⋅⋅==−+−=−=ri mj i i ij ri mj ij T Y Y Y Y Y Y S 112112()[()(∑∑∑∑∑∑==⋅⋅==⋅==⋅−−+−+−=ri mj i i ij ri mj i ri mj i ij Y Y Y Y Y Y Y Y 11112112))((2)()(A e A e ri i A e ri mj i ij i A e S S S S Y Y S S Y Y Y Y S S +=++=×−++=−−++=∑∑∑=⋅==⋅⋅0]0[(2])()[(2111,且显然有f T = n − 1 = (n − r ) + (r − 1) = f e + f A . 8.1.4检验方法由于组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应,通过比较组内偏差平方和与组间偏差平方和检验因子的显著性.下面将证明在假设所有主效应都等于0成立的条件下,它们的均方和之商服从F 分布.定理 在单因子方差分析模型中,组内偏差平方和S e 与组间偏差平方和S A 满足(1)E(S e ) = (n − r )σ 2,且)(~22r n Se −χσ; (2)∑=+−=ri i A a m r S 122)1()E(σ,且当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S Aχσ;(3)S e 与S A 相互独立. 证:根据第五章的定理结论知:设X 1 , X 2 , …, X n 相互独立且都服从正态分布N (µ , σ 2),记∑==ni i X n X 11,∑=−=ni i X X S 120)(,则X 与S 0相互独立,且)1(~22−n S χσ.(1)∑∑==⋅−=ri mj i ij e Y Y S 112)(,Y i 1 , Y i 2 , …, Y im 相互独立且都服从正态分布N(µ i , σ 2),∑=⋅=mi ij i Y m Y 11,则∑=⋅−mj i ij Y Y 12)(与⋅i Y 相互独立,且)1(~)(12122−−∑=⋅m Y Y mj i ijχσ,因在不同水平下的样本都相互独立,则∑∑==⋅−ri mj i ij Y Y 112)(与⋅⋅⋅r Y Y Y ,,,21L 也相互独立,且根据独立χ 2变量的可加性知)(~)(121122r rm Y Y r i mj i ij−−∑∑==⋅χσ,故)(~)(1211222r n Y Y S r i mj i ije−−=∑∑==⋅χσσ,即得E(S e ) = (n − r )σ 2;(2)∑∑∑∑∑=⋅=⋅==⋅=⋅−+−+=−+=−=ri i i r i i r i ir i i i r i i A a m m a m a m Y Y m S 112121212(2)()()(εεεεεε,因ε ij (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (0, σ 2 ),有∑=⋅=m j ij i m 11εε (i = 1, 2, …, r ) 相互独立且都服从正态分布,0(2m N σ,∑=⋅=ri i r 11εε,则0)E()E()E(=−=−⋅⋅εεεεi i 且)1(~)(2212−−∑=⋅r mri i χσεε,即m r r i i 212)1()(E σεε−=⎥⎦⎤⎢⎣⎡−∑=⋅, 故21211212)1()E(2)(E )E(σεεεε−+=−+⎥⎦⎤⎢⎣⎡−+=∑∑∑∑==⋅=⋅=r a m a m m a m S ri i r i i i r i i ri iA ,当H 0:a 1 = a 2 = … = a r = 0成立时,∑∑=⋅=⋅−=−=ri i r i i A m Y Y m S 1212)()(εε,故)1(~)(22122−−=∑=⋅r mS ri i Aχσεεσ;(3)因∑∑==⋅−=ri mj i ij e Y Y S 112)(与⋅⋅⋅r Y Y Y ,,,21L 相互独立,有S e 与∑=⋅=ri i Y r Y 11相互独立,且∑=⋅−=ri i A Y Y m S 12(,故S e 与S A 相互独立.由于)(~22r n S e −χσ,当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S A χσ,且S e 与S A 相互独立,则根据F 分布的定义可知:当H 0成立时,有),1(~)()1(22r n r F MS MS f S f S r n S r S F eAe e A A eA−−==−−=σσ.由于∑=+−=ri i A a m r S 122)1()E(σ,则F 越大,即S A 越大时,越有可能发生a i ≠ 0,则检验的拒绝域为右侧.步骤:假设H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==, 显著水平α ,右侧拒绝域W = {f ≥ f 1 − α (r − 1, n − r )},计算f ,并作出判断. 这是F 检验法.通常列成方差分析表: 来源 平方和 自由度 均方和 F 比 因子 S A f A = r − 1 MS A = S A / f A F = MS A / MS e误差 S e f e = n − r MS e = S e / f A总和S Tf T = n − 1为了计算方便,可给出三个偏差平方和的计算公式.对于一组数据X 1 , X 2 , …, X n ,记∑==ni i X n X 11,则有2112212121)(⎟⎟⎠⎞⎜⎜⎝⎛−=−=−∑∑∑∑====n i i ni i n i i n i i X n X X n X X X , 记∑==m j ij i Y T 1,∑∑∑=====r i mj ij r i i Y T T 111,可得2112211112211211211)(T n Y Y n Y Y n Y Y Y S r i mj ij r i m j ij ri mj ij ri mj ij ri mj ij T −=⎟⎟⎠⎞⎜⎜⎝⎛−=−=−=∑∑∑∑∑∑∑∑∑∑==========, 212211121212121111)(T n T m Y n mr Y m m Y r Y m Y Y m S r i i r i m j ij r i m j ij r i i ri i A −=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡−=−=∑∑∑∑∑∑∑======⋅=⋅, ∑∑∑===−=−=r i i r i mj ijA T e T m Y S S S 121121.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在显著水平α = 0.05下检验这三种饲料对雏鸡增重是否有显著差别. 解:假设H 0:a 1 = a 2 = a 3 = 0 vs H 1:a 1 , a 2 , a 3不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,平方和显著水平α = 0.05,n = 24,r = 3,m = 8,右侧拒绝域W = { f ≥ f 0.95 (2, 21)} = { f ≥ 3.47},试验数据计算表 因子水平试验数据Y ijT i2i T∑=mj ijY 12A 1 1073 1009 1060 1001 10021012100910288194 67141636 8398024 A 2 1107 1092 990 1109 10901074112210018585 73702225 9230355 A 31093 1029 1080 1021 10221032102910488354 69789316 8728984总和 25133 210633177 26357363计算可得0833.96602513324121063317781112212=×−×=−=∑=T n T m S r i i A ,875.282152106331778126357363112112=×−=−=∑∑∑===r i i r i mj ije T m Y S ,方差分析表来源平方和自由度均方和F 比因子 9660.0833 2 4830.0417 3.5948 误差 28215.875 21 1343.6131 总和 37875.958323有F 比f = 3.5948 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这三种饲料对雏鸡增重有显著差别, 并且检验的p 值p = P {F ≥ 3.5948} = 1 − 0.9546 = 0.0454 < α = 0.05. 8.1.5参数估计在方差分析问题中,可对总均值µ ,误差的方差σ 2作参数估计.当检验结果为因子不显著时,各水平下指标的总体均值与总体方差都相同,可将所有水平的指标看作一个统一的总体,全部试验数据是来自正态总体Y ~ N (µ , σ 2 ) 的一个容量为n = rm 的样本,因此样本均值nT Y n Y r i m j ij ==∑∑==111,样本方差1)(111122−=−−=∑∑==n S Y Y n S T r i m j ij.这样总均值µ 和误差的方差σ 2的点估计分别为Y =µˆ,22S =∧σ,置信度为1 − α 的置信区间分别是 ])1([2/1nSn t Y −±∈−αµ,])1()1(,)1()1([22/222/122−−−−∈−n S n n S n ααχχσ.当检验结果为因子显著时,还可进一步对主效应a i 作参数估计. 一.点估计由于试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ + a i , σ 2 ),根据最大似然估计法,得到总均值µ ,误差的方差σ 2及主效应a i 的点估计.似然函数∏∏∏∏====⎪⎭⎪⎫⎪⎩⎪⎨⎧−−−==r i mj i ij r i m j ij r a y y p a a a L 11222112212)(exp π21)(),,,,,(σµσσµL ⎭⎬⎫⎩⎨⎧−−−=∑∑==ri mj iij na y 112222)(21exp )π2(1µσσ, 取对数,得∑∑==−−−−−=r i mj i ija yn n L 11222)(21)ln(2π)2ln(2ln µσσ.令关于µ 的偏导数等于0,有⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑∑∑∑=====r i i r i mj ijri mj i ij a m n y a y L 11121121)1()(221ln µσµσµ0101112112=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∑∑∑∑====µσµσn y n y r i m j ij r i mj ij , 得y y n r i mj ij ==∑∑==111µ,故总均值µ 的最大似然估计为Y =µˆ. 令关于a k 的偏导数等于0,有01)1()(221ln 1212=⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑==k mj kj mj k kj k ma m y a y a L µσµσ, k = 1, 2, …, r , 得µµ−=−=⋅=∑k mj kj k y y m a 11,故主效应a i 的最大似然估计为Y Y Y a i i i −=−=⋅⋅µˆˆ, i = 1, 2, …, r ,相应,第i 个水平下的总体均值µ i 的最大似然估计为⋅=+=i i i Y a ˆˆˆµµ. 令关于σ 2的偏导数等于0,有0)(2112)(ln 112422=−−+⋅−=∂∂∑∑==r i mj i ija yn L µσσσ,得∑∑==−−=r i m j i ij a y n 1122)(1µσ,故误差的方差σ 2的最大似然估计为nS Y Y n e r i m j i ij M =−=∑∑==⋅∧1122)(1σ.由于E(S e ) = (n − r )σ 2,可知∧2Mσ不是σ 2的无偏估计,修偏得σ 2的无偏估计e eMS rn S =−=∧2σ. 二.置信区间对总均值µ ,误差的方差σ 2及第i 个水平下的总体均值µ i 给出置信区间.第i 个水平下总体均值µ i 的点估计为∑=⋅==mj ij i i Y m Y 11ˆµ,因试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m )相互独立且都服从正态分布N(µ i , σ 2),则有),(~2mN Y i i σµ⋅,即)1,0(~N mY ii σµ−⋅,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据χ 2分布的定义可得 )(~ˆ)(2r n t mY r n S m Y i i eii −−=−−⋅⋅σµσσµ,故第i 个水平下总体均值µ i 的置信度为1 − α 的置信区间是]ˆ)([2/1mr n t Y i i σµα−±∈−⋅.总均值µ 的点估计为∑∑====r i mj ij Y n Y 111ˆµ,因数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2 ),有Y 服从正态分布,且µµµ====∑∑∑∑∑=====r i i r i mj i r i m j ij n m n Y n Y 111111)E(1)E(,n n n n Y nY ri mj r i mj ij 222112211211)Var(1)Var(σσσ=⋅===∑∑∑∑====, 得,(~2nN Y σµ,即)1,0(~N nY σµ−,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与Y 相互独立,则根据t 分布的定义可得 )(~ˆ)(2r n t nY r n S n Y e−−=−−σµσσµ, 故总均值µ 的置信度为1 − α 的置信区间是ˆ)([2/1nr n t Y σµα−±∈−.误差的方差σ 2的点估计为r n S e −=∧2σ,且)(~22r n Se −χσ,故误差的方差σ 2的置信度为1 − α 的置信区间是⎥⎦⎤⎢⎢⎢⎣⎡−−−−=⎥⎦⎤⎢⎣⎡−−∈∧−∧−)()(,)()()(,)(22/222/1222/22/12r n r n r n r n r n S r n S e e ααααχσχσχχσ. 例 由前面的鸡饲料对鸡增重问题的数据给出总均值µ ,误差的方差σ 2及三个水平下总体均值µ1 , µ 2 , µ 3的点估计和置信区间(α = 0.05).解:前面已检验知因子显著,则三个水平下总体均值µ1 , µ 2 , µ 3的点估计为25.102488194ˆ111====⋅m T Y µ, 125.107388585ˆ222====⋅m T Y µ,25.104488354ˆ333====⋅m T Y µ,总均值µ 的点估计为2083.10472425133ˆ====n T Y µ,误差的方差σ 2的点估计为6131.13432==−=∧e eMS rn S σ, 置信度为0.95的置信区间是]2008.1051,2992.997[86131.13430796.225.1024[]ˆ)21([975.011=×±=±∈⋅m t Y σµ,]0758.1100,1742.1046[86131.13430796.2125.1073[]ˆ)21([975.022=×±=±∈⋅m t Y σµ,]2008.1071,2992.1017[]86131.13430796.225.1044[]ˆ)21([975.033=×±=±∈⋅mt Y σµ,]7684.1062,6482.1031[]246131.13430796.22083.1047[]ˆ)21([975.0=×±=±∈nt Y σµ,[]9608.2743,2861.7952829.10875.28215,4789.35875.28215)21(,)21(2025.02975.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσe e S S . 8.1.6重复数不等的情形如果每个水平下试验次数不全相等,称为重复数不等的情形,其检验方法与在重复数相等的情形下类似,只是在对数据的表述和处理上有几点区别. 一.数据设第i 个水平A i 下的重复数为m i ,所取得的样本为i im i i Y Y Y ,,,21L ,i = 1, 2, …, r .显然重复数总数为n ,即m 1 + m 2 + … + m r = n . 二.总均值总均值µ 是各水平下总体均值µ i 的以频率nm i为权数的加权平均,即 ∑==+++=r i i i r r m n n m n m n m 122111µµµµµL .三.主效应约束条件第i 个水平下主效应a i = µ i − µ ,则满足011=−=∑∑==µµn m a m ri iir i ii .四.模型单因子方差分析在重复数不等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m m j r i a Y ij r i i i i ij i ij 相互独立,且都服从L L 检验H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0.五.平方和的计算记∑==im j ij i Y T 1,∑=⋅==im j ij i i i i Y m m T Y 11,∑∑∑=====ri i ri m j ij T Y T i111,∑∑∑=⋅=====ri i i r i m j ij Y m n Y n n T Y i 11111, 则各平方和的计算公式为n T Y Y n Y Y Y S ri m j ijri m j ijri m j ij T iii21122112112)(−=−=−=∑∑∑∑∑∑======, n T m T Y n Y m Y Y m Y Y S ri ii ri i i ri i i ri m j i A i21221212112)()(−=−=−=−=∑∑∑∑∑==⋅=⋅==⋅, ∑∑∑===−=−=ri ii ri m j ijA T e m T Y S S S i12112. 例 某食品公司对一种食品设计了四种新包装,为了考察哪种包装最受顾客欢迎,选了10个地段繁华程度相似、规模相近的商店做试验,其中两种包装各指定两个商店销售,另两种包装各指定三个商店销售.在试验期内各店货架排放的位置、空间都相同,营业员的促销方法也基本相同,经过一段时间,记录其销售量数据,见下表包装类型销售量数据A 1 12 18 A 2 14 12 13 A 3 19 17 21 A 4 24 30在显著水平α = 0.01下检验这四种包装对销售量是否有显著影响. 解:假设H 0:a 1 = a 2 = a 3 = a 4 = 0 vs H 1:a 1 , a 2 , a 3 , a 4不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,显著水平α = 0.01,n = 10,r = 4,右侧拒绝域W = { f ≥ f 0.99 (3, 6)} = { f ≥ 9.78},销售量数据计算表计算可得258180101349812212=×−=−=∑=T n m T S ri ii A ,463498354412112=−=−=∑∑∑===ri i i ri mj ije m T Y S ,方差分析表来源平方和自由度均方和F 比因子 258 3 86 11.2174 误差 46 6 7.6667 总和 3049有F 比f = 11.2174 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这四种包装对销售量有显著影响, 并且检验的p 值p = P {F ≥ 11.2174} = 1 − 0.9929 = 0.0071 < α = 0.01. 由于因子显著,则四个水平下总体均值µ1 , µ 2 , µ 3 , µ 4的点估计为15230ˆ1111====⋅m T Y µ, 13339ˆ2222====⋅m T Y µ, 19357ˆ3333====⋅m T Y µ, 27254ˆ4444====⋅m T Y µ, 总均值µ 的点估计为1810180ˆ====n T Y µ, 误差的方差σ 2的点估计为6667.72==−=∧e eMS rn S σ, 置信度为0.99的置信区间是]2587.22,7413.7[]26667.77074.315[]ˆ)6([1995.011=×±=±∈⋅m t Y σµ,]9267.18,0733.7[]36667.77074.313[]ˆ)6([2995.022=×±=±∈⋅m t Y σµ,]9267.24,0733.13[]36667.77074.319[]ˆ)6([3995.033=×±=±∈⋅m t Y σµ,]2587.34,7413.19[]26667.77074.327[]ˆ)6([4995.044=×±=±∈⋅m t Y σµ,]2462.21,7538.14[106667.77074.318[]ˆ)6([995.0=×±=±∈nt Y σµ,[]0775.68,4801.26757.046,5476.1846)6(,)6(2005.02995.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσeeS S .§8.2 多重比较上一节是将多个总体作为一个整体进行检验.如果检验结果是因子A 显著,则可以认为各水平下的均值µ i 不全相等,但却不能直接说明µ i 中哪些可以认为相等,哪些可以认为不等.这一节是对各个µ i 两两之间进行比较,对µ i − µ j ,也就是效应差a i − a j 作出估计、检验. 8.2.1效应差的置信区间效应差a i − a j = µ i − µ j 的点估计为⋅⋅−j i Y Y .因Y ik ~ N (µ i , σ 2 ), (i = 1, 2, …, r , k = 1, 2, …, m i ),则),(~121i i m k ik i i m N Y m Y iσµ∑=⋅=,,(~121jj m k jkj j m N Ym Y jσµ∑=⋅=,且当i ≠ j 时,⋅i Y 与⋅j Y 相互独立,可得))11(,(~2σµµji j i j i m m N Y Y +−−⋅⋅, 即)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )(~11ˆ)()()(11)()(2r n t m m Y Y r n S m m Y Y ji j i j i ej i j i j i −+−−−=−+−−−⋅⋅⋅⋅σµµσσµµ,故效应差a i − a j = µ i − µ j 的置信度为1 − α 的置信区间是]11ˆ)([2/1ji j i j i m m r n t Y Y +⋅−±−∈−−⋅⋅σµµα. 例 由前面的鸡饲料对鸡增重问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.05). 解:因m 1 = m 2 = m 3 = 8,n = 24,r = 3,有25.102488194111===⋅m T Y ,125.107388585222===⋅m T Y ,25.104488354333===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为875.48125.107325.10242121−=−=−=−⋅⋅∧Y Y µµ, 2025.104425.10243131−=−=−=−⋅⋅∧Y Y µµ, 875.2825.1044125.10733232=−=−=−⋅⋅∧Y Y µµ;因6553.3621875.28215ˆ==−=r n S e σ,有1142.385.06553.360796.211ˆ)21(975.0=××=+⋅j i m m t σ,则各效应差µ i − µ j 的置信度为0.95的置信区间分别是]7608.10,9892.86[]1142.38875.48[]8181ˆ)21([975.02121−−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]1142.18,1142.58[]1142.3820[]8181ˆ)21([975.03131−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]9892.66,2392.9[]1142.38875.28[]8181ˆ)21([975.03232−=±=+⋅±−∈−⋅⋅σµµt Y Y . 例 由前面的食品包装对销售量影响问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.01). 解:因m 1 = 2,m 2 = 3,m 3 = 3,m 4 = 2,n = 10,r = 4,有15230111===⋅m T Y ,13339222===⋅m T Y ,19357333===⋅m T Y ,27254444===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为213152121=−=−=−⋅⋅∧Y Y µµ,419153131−=−=−=−⋅⋅∧Y Y µµ, 1227154141−=−=−=−⋅⋅∧Y Y µµ,619133232−=−=−=−⋅⋅∧Y Y µµ, 1427134242−=−=−=−⋅⋅∧Y Y µµ,827194343−=−=−=−⋅⋅∧Y Y µµ;因7689.2646ˆ==−=r n S e σ,有2653.107689.27074.3ˆ)6(995.0=×=⋅σt ,则各效应差µ i − µ j 的置信度为0.99的置信区间分别是]3709.11,3709.7[]9129.02653.102[]3121ˆ)6([995.02121−=×±=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.5,3709.13[]9129.02653.104[]3121ˆ)6([995.03131−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]7347.1,2653.22[]12653.1012[]2121ˆ)6([995.04141−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3816.2,3816.14[]8165.02653.106[]3131ˆ)6([995.03232−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]6291.4,3709.23[]9129.02653.1014[]2131ˆ)6([995.04242−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.1,3709.17[]9129.02653.108[]2131ˆ)6([995.04343−=×±−=+⋅±−∈−⋅⋅σµµt Y Y .8.2.2 多重比较问题对各个µ i 两两之间进行比较,也就是检验任意两个水平A i 与A j 下的总体均值是否相等,即检验假设j i ij H µµ=:0 vs j i ij H µµ≠:1, i , j = 1, 2, …, r .对于每一个假设ijH 0可以采取上一章两个正态总体的均值比较方法进行检验,但这里需要同时检验2)1(2−=r r C r 个这种假设. 设需要同时检验k 个假设k i H i ,,2,1,0L =,每一个假设的显著水平是α ,即在iH 0成立的条件下,接受i H 0的概率为1 − α ,但在所有k 个假设i H 0都成立的条件下,要同时接受所有假设iH 0的概率就可能远小于1 − α .事实上,此时对每一个假设i H 0,拒绝i H 0的概率为α ,而对所有k 个假设k i H i ,,2,1,0L =,至少拒绝其中一个i H 0的概率最大时可能达到k α ,即同时接受所有假设i H 0的概率就可能只有1 − k α .可见,需要同时检验多个假设时,一般不应逐个检验每一个假设,而是采用多重比较方法同时检验多个假设.多重比较方法,就是针对所有假设,构造一个统一的拒绝域,再逐个进行比较.这里,需要检验假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 在ij H 0成立的条件下,⋅i Y 与⋅j Y 不应相差太大.对每一个假设ijH 0,拒绝域可以取为}|{|ij j i ij c Y Y W ≥−=⋅⋅,其中c ij 是常数.对所有的假设ijH 0,统一的拒绝域取为U U rj i ij j i rj i ijc Y YWW ≤<≤⋅⋅≤<≤≥−==11}|{|.分成重复数相等与不等两种场合进行讨论. 8.2.3重复数相等场合的T 法重复数相等时,各水平是平等的,由对称性,可以要求所有的c ij 相等,记为c ,即统一的拒绝域为}min max {}||max {}|{|1111c Y Y c Y Y c Y YW i ri i ri j i rj i rj i j i ≥−=≥−=≥−=⋅≤≤⋅≤≤⋅⋅≤<≤≤<≤⋅⋅U .因Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2),有,(~2mN Y i i σµ⋅.当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有,(~2mN Y i σµ⋅,则)1,0(~N mY i σµ−⋅.但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据t 分布的定义可得 )()(~ˆ)(2e i ei f t r n t mY r n S m Y =−−=−−⋅⋅σµσσµ.统一的拒绝域W 的形式可改写为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥−−−=≥−=⋅≤≤⋅≤≤⋅≤≤⋅≤≤m c m Y m Y c Y Y W i r i i r i i r i i r i σσµσµˆˆmin ˆmax }min max {1111, 其中mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=是从分布为t ( f e )的总体中抽取容量为r 的样本所得的最大与最小顺序统计量之差(极差),称之为t 化极差统计量,其分布记为q (r , f e ).显然,t 化极差统计量Q 的分布q (r , f e ) 只与水平个数r 以及t 分布的自由度f e 有关,而与参数µ , σ 2及重复数m 无关.分布q (r , f e )的准确形式比较复杂,通常采用随机模拟方法得到其分位数q 1 − α (r , f e ).对于给定的容量r 及自由度f e ,随机模拟方法是(1)随机生成r 个标准正态分布N (0, 1) 随机数x 1 , x 2 , …, x r ,将这r 个随机数按由小到大的顺序排列,得到其最小随机数x (1) 和最大随机数x (r ) ;(2)随机生成1个自由度为f e 的χ 2分布χ 2 ( f e ) 随机数y ; (3)计算er f y x x q )1()(−=;(4)重复(1)至(3)步N 次,得到t 化极差统计量Q 的N 个观测值,只要N 非常大(如10 4或10 5次),就可得q (r , f e )的各种分位数q 1 − α (r , f e )的近似值.当显著水平为α 时,拒绝域{}),(ˆ1ef r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,有m c f r q e σαˆ),(1=−,可得 mf r q c e σαˆ),(1⋅=−,再逐个将||⋅⋅−j i Y Y 与c 比较,得出每一对µ i 与µ j 是否有显著差异的结论.步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α ,右侧拒绝域{}),(ˆ1e f r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,计算mf r q c e σαˆ),(1⋅=−,逐个将||⋅⋅−j i Y Y 与c 比较,得出结论.例 由前面的鸡饲料对鸡增重影响问题的数据对各因子作多重比较(α = 0.05).解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 3, 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α = 0.05,r = 3,f e = n − r = 21,右侧拒绝域W = {Q ≥ q 0.95 (3, 21)} = {Q ≥ 3.57},因m = 8,6553.3621875.28215ˆ==−=r n S e σ,有2658.4686553.3657.3=×=c , 由于c Y Y >=−=−⋅⋅875.48|125.107325.1024|||21,故µ 1与µ 2有显著差异;c Y Y <=−=−⋅⋅20|25.104425.1024|||31,故µ 1与µ 3没有显著差异; c Y Y <=−=−⋅⋅875.28|25.1044125.1073|||32,故µ 2与µ 3没有显著差异;8.2.4重复数不等场合的S 法重复数不等时,因)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )()(~11ˆ)()(e ji j i j i f t r n t m m Y Y =−+−−−⋅⋅σµµ,当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有)(~11ˆe ji j i ij f t m m Y Y T +−=⋅⋅σ,得),1(~11ˆ)(222e j i j i ijij f F m m Y Y T F ⎟⎟⎠⎞⎜⎜⎝⎛+−==⋅⋅σ,从而统一的拒绝域可以取为U U r j i ji j i r j i ji j i c m m Y Y m m c Y Y W ≤<≤⋅⋅≤<≤⋅⋅≥+−=+≥−=11}11||{}11|{| }ˆmax {}ˆ11ˆ)(max {}ˆ11ˆ||max {221222211σσσσσc F c m m Y Y cm m Y Y ij r j i j i j i r j i ji j i r j i ≥=≥⎟⎟⎠⎞⎜⎜⎝⎛+−=≥+−=≤<≤⋅⋅≤<≤⋅⋅≤<≤,可以证明,),1(~1max 1e ij rj i f r F r F −−≤<≤&.当显著水平为α 时,拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ,有221ˆ)1(),1(σα−=−−r c f r f e ,可得),1()1(ˆ1e f r f r c −−=−ασ,因此⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m c c 11),1()1(ˆ111ασ, 再逐个将||⋅⋅−j i Y Y 与ji ij m m cc 11+=比较,得出每一对µ i 与µ j 是否有显著差异的结论. 步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量),1(~11ˆ)1()(max1max 2211e j i j i rj i ijrj i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α ,右侧拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ, 计算⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m cc 11),1()1(ˆ111ασ, 逐个将||⋅⋅−j i Y Y 与c ij 比较,得出结论.例 由前面的食品包装对销售量影响问题的数据对各因子作多重比较(α = 0.01). 解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 4, 统计量),1(~11ˆ)1()(max)1(max 224141e j i j i j i ij j i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α = 0.01,r = 4,f e = n − r = 6,右侧拒绝域W = {F ≥ f 0.99 (3, 6)} = {F ≥ 9.78},因m 1 = m 4 = 2,m 2 = m 3 = 3,7689.2646ˆ==−=r n S e σ,有9981.1478.937689.2=××=c , 则6914.13312134241312=+====cc c c c ,9981.14212114=+=c c ,2459.12313123=+=c c , 由于12212|1315|||c Y Y <=−=−⋅⋅,故µ 1与µ 2没有显著差异;13314|1915|||c Y Y <=−=−⋅⋅,故µ 1与µ 3没有显著差异; 144112|2715|||c Y Y <=−=−⋅⋅,故µ 1与µ 4没有显著差异; 23326|1913|||c Y Y <=−=−⋅⋅,故µ 2与µ 3没有显著差异; 244214|2713|||c Y Y >=−=−⋅⋅,故µ 2与µ 4有显著差异; 34438|2719|||c Y Y <=−=−⋅⋅,故µ 3与µ 4没有显著差异.§8.3 方差齐性检验在单因子方差分析统计模型中,总是假设各个水平下的总体方差都相等,即222221σσσσ====r L ,称之为方差齐性.但方差齐性不一定自然成立,需要对其进行检验,检验的原假设与备择假设为H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,称为方差齐性检验.各水平下的总体方差2i σ分别是以该水平下的样本方差2i S 作为点估计,以由22221,,,r S S S L 构成的函数作为检验的统计量.分成重复数相等与不等两种场合进行讨论. 8.3.1重复数相等场合的Hartley 检验法重复数相等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅m T Y m Y m Y m Y Y m S i m j ij i m j ij m j i ij i2122121221111)(11,i = 1, 2, …, r , 各水平是平等的,以r 个水平下样本方差),,2,1(,2r i S i L =的最大值与最小值之比作为检验的统计量H ,即},,,min{},,,max{2222122221r r S S S S S S H L L =.在方差齐性成立的条件下,统计量H 的分布只与水平个数r 及样本方差2i S 的自由度f = m − 1有关,记为H (r , f ).分布H (r , f )的准确形式比较复杂,通常采用随机模拟方法得到其分位数H 1 − α (r , f ).显然有H ≥ 1,且H 的观测值越接近1,方差齐性越应该成立,因此拒绝域取为W = {H ≥ H 1 − α (r , f )}.步骤:假设H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,统计量},,,min{},,,max{2222122221rr S S S S S S H L L =,显著水平α ,右侧拒绝域W = {H ≥ H 1 − α (r , f )}, 计算H ,并作出判断. 这称之为Hartley 检验法.例 由前面的鸡饲料对鸡增重影响问题的数据采用Hartley 检验法进行方差齐性检验(α = 0.05).解:假设H 0:232221σσσ== vs H 1:232221,,σσσ不全相等,统计量},,min{},,max{232221232221S S S S S S H =, 显著水平α = 0.05,且r = 3,f = m − 1,右侧拒绝域W = {H ≥ H 0.95 (3, 7)} = {H ≥ 6.94},根据试验数据计算表,可得T 1 = 8194,T 2 = 8585,T 3 = 8354,8398024121=∑=mj j Y ,9230355122=∑=mj jY,8728984123=∑=mj j Y ,则9286.759)881948398024(71221=−=S ,9821.2510885859230355(71222=−=S ,9286.759)883548728984(71223=−=S ,可得W H ∉==3042.39286.7599821.2510,故拒绝H 0 ,接受H 1 ,可以认为三个水平下的总体方差满足方差齐性.8.3.2 重复数不等场合大样本情形的Bartlett 检验法重复数不等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅i i m j ij i i i m j ij i m j i ij i im T Y m Y m Y m Y Y m S i i i 2122121221111)(11,i = 1, 2, …, r , 记i i m j ijm j i ij i m T Y Y Y Q ii21212)(−=−=∑∑==⋅为第i 个水平下的偏差平方和,f i = m i − 1为其自由度,有i i i f Q S =2,且e r i m j i ijr i i S Y YQ i=−=∑∑∑==⋅=1121)(,e ri ir i i f r n r mf =−=−=∑∑==11,则组内偏差均方和∑∑∑=======ri i ei ri ii e ri ie e e e Sf f S f f Q f f S MS 1212111, 即MS e 等于样本方差22221,,,r S S S L 以各自自由度所占比例为权数的加权算术平均,而相应的加权几何平均记为GMS e ,即∏==ri f f i e eiS GMS 12)(.以MS e 与GMS e 之商的一个函数作为检验统计量.可以证明,大样本情形,在方差齐性成立的条件下,)1(~])ln()ln([1ln 212−−==∑=r S f MS f C GMS MS C f B ri i i e e e e e χ&,其中常数⎟⎟⎠⎞⎜⎜⎝⎛−−+=∑=e r i i f f r C 11)1(3111. 由于算术平均必大于等于几何平均,即MS e ≥ GMS e ,当且仅当所有2i S 都相等时等号成立,即B 的观测值越小,方差齐性越应该成立,因此拒绝域取为)}1({21−≥=−r B W αχ.。
第8章假设检验与方差分析【引例】重庆啤酒股份有限公司(以下简称重庆啤酒)于1990年代初斥巨资开始乙肝新药的研发,其股票被视作“生物医药”概念股受到市场热捧。
尤其是2010~2011年的两年间,在上证指数大跌1/3的背景下,重庆啤酒股价却从23元左右飙升最高至83.12元,但公司所研制新药的主要疗效指标的初步统计结果于2011年12月8日披露后,股价连续跌停,12月22日以28.45元报收后停牌。
2012年1月10日重庆啤酒公告详细披露了有关研究结论,复牌后股价又遭遇连续数日下跌,1月19日跌至20.16元。
此公告明确告知:“主要疗效指标方面,意向性治疗人群的安慰剂组与600μg组,及安慰剂组与εPA-44 900μg组之间,HBeAg/抗HBe 血清转换在统计意义上均无差异”。
通俗地说,用药与不用药(安慰剂组)以及用药多与少(900μg组与600μg组),都没有明显差异,这意味着该公司研制的乙肝新疫苗无效。
有关数据如表8.1所示:上表数据显示,两个用药组的应答率都高于安慰剂组的应答率,但为什么说“在统计意义上均无差异”?为什么说这个结论表示乙肝新疫苗无效?什么叫“在统计意义上无差异”?如何根据样本数据作出统计意义上有无差异的判断?解答这些问题就需要本章所要介绍的假设检验。
现实中,人们经常需要利用样本信息来判断有关总体特征的某个命题是真还是伪,或对某个(些)因素的影响效应是否显著作出推断,所以假设检验和方差分析有着广泛的应用。
例如,在生物医学领域,判断某种新药是否比旧药更有效;在工业生产中,根据某批零件抽样检查的信息来判断整批零件的质量是否符合规格要求;在流通领域,鉴别产品颜色是否对销售量有显著影响等等。
这些分析研究都离不开假设检验或方差分析。
假设检验与方差分析的具体方法很多,研究目的和背景条件不同,就需采用不同的方法。
本教材介绍假设检验与方差分析的基本原理和一些基本方法。
但通过本章的学习,理解了有关概念和基本思想,对更为复杂的检验结果也不难作出基本的判断和解读。
第8章假设检验与方差分析【引例】重庆啤酒股份有限公司(以下简称重庆啤酒)于1990年代初斥巨资开始乙肝新药的研发,其股票被视作“生物医药”概念股受到市场热捧。
尤其是2010~2011年的两年间,在上证指数大跌1/3的背景下,重庆啤酒股价却从23元左右飙升最高至83.12元,但公司所研制新药的主要疗效指标的初步统计结果于2011年12月8日披露后,股价连续跌停,12月22日以28.45元报收后停牌。
2012年1月10日重庆啤酒公告详细披露了有关研究结论,复牌后股价又遭遇连续数日下跌,1月19日跌至20.16元。
此公告明确告知:“主要疗效指标方面,意向性治疗人群的安慰剂组与600μg组,及安慰剂组与εPA-44 900μg组之间,HBeAg/抗HBe 血清转换在统计意义上均无差异”。
通俗地说,用药与不用药(安慰剂组)以及用药多与少(900μg组与600μg组),都没有明显差异,这意味着该公司研制的乙肝新疫苗无效。
有关数据如表8.1所示:上表数据显示,两个用药组的应答率都高于安慰剂组的应答率,但为什么说“在统计意义上均无差异”?为什么说这个结论表示乙肝新疫苗无效?什么叫“在统计意义上无差异”?如何根据样本数据作出统计意义上有无差异的判断?解答这些问题就需要本章所要介绍的假设检验。
现实中,人们经常需要利用样本信息来判断有关总体特征的某个命题是真还是伪,或对某个(些)因素的影响效应是否显著作出推断,所以假设检验和方差分析有着广泛的应用。
例如,在生物医学领域,判断某种新药是否比旧药更有效;在工业生产中,根据某批零件抽样检查的信息来判断整批零件的质量是否符合规格要求;在流通领域,鉴别产品颜色是否对销售量有显著影响等等。
这些分析研究都离不开假设检验或方差分析。
假设检验与方差分析的具体方法很多,研究目的和背景条件不同,就需采用不同的方法。
本教材介绍假设检验与方差分析的基本原理和一些基本方法。
但通过本章的学习,理解了有关概念和基本思想,对更为复杂的检验结果也不难作出基本的判断和解读。
本章小结1.假设检验是基于小概率原理的一种统计推断方法,针对待检验的原假设和备择假设,检验统计量及其分布是检验的理论基础,检验统计量的观测值及P值是作出检验结论的依据。
检验结论可能犯的错误有两类,它们的概率α和β此消彼长。
2.参数的假设检验主要包括总体均值、总体方差和总体比例的检验。
本章所介绍的检验χ检验、F检验等等。
方法有Z检验、t检验、23. 一个总体参数的假设检验和两个总体参数之差(或比)的检验,其检验统计量不同,要注意它们之间的联系与区别。
4.单因素方差分析法从形式上看是对多个总体均值相等性的一种F检验,实质上是研究一个定性变量对一个定量变量有无显著影响。
基本概念主要有系统误差、随机误差、组内平方和、组间平方和、组内方差、组间方差等。
方差分析法的基本思想是通过观察组间方差与组内方差之比(F统计量)是否显著偏大来判断有无系统误差的存在,从而检验多个总体均值是否相等。
5.假设检验和方差分析的计算可借助于EXCEL或SPSS等软件来实现。
基本知识梳理检验方法一览表练习题一、单项选择题(在4个备选答案中选出1个正确答案)1.当检验统计量的观测值未落入原假设的拒绝域时,表示( ) A 可以放心地接受原假设 B 没有充足的理由否定原假设 C 没有充足的理由否定备择假设 D 备择假设是错误的2.在其他条件不变的情况下,增加样本量,犯两类错误的概率会( ) A 都减小 B 都增大 C 都不变 D 一个增大一个减小3.某企业考虑从外地紧急采购一批加工原料,若这批原料的质量达到标准,企业可盈利10万元,但是如果这批原料质量达不到标准,企业将损失25万元。
该企业面临判断:H 0:原料质量达标;H 1:原料质量未达标。
对这个问题进行假设检验时,下列说法不正确的是( ) A 拒绝购买达标原料属于犯Ⅰ类错误 B 购进未达标原料属于犯Ⅱ类错误 C 这个检验中只允许犯第一类错误 D α 不宜太小4.若假设检验为左侧检验,检验统计量为t ,由样本计算的检验统计值为0t ,则检验的P 值等于( )A P{t≤0t }B P{t>0t }C 2 P{t<0t }D 1-P{t<0t }5.对总体均值进行检验的假设为H 0:μ=100,H 0:μ≠100。
由随机样本得到的检验统计量为Z =1.8,则检验的P 值为( )A 0.036B 0.072C 0.928D 0.9646.如果某项假设检验的结论在0.05的显著性水平下是显著的(即在0.05的显著性水平下拒绝了原假设),则错误的说法是( )A. 检验的P 值不大于0.05B.在0.01的显著性水平下不一定具有显著性C. 原假设为真的概率小于0.05D.在0.10的显著性水平下必定也是显著的 7.关于检验统计量,下列说法中错误的是( )A 检验统计量是样本的函数B 检验统计量包含未知总体参数C 在原假设成立的前提下检验统计量的分布是明确可知的D 检验同一总体参数可以采用多个不同检验统计量8.已知总体服从正态分布,现抽取一容量为15的样本对总体方差进行假设检验, 0H :2σ=1;1:21<σH 。
α=0.05,则原假设的拒绝区域为( )A (0,23.685)B (0,24.996)C (0,6.571)D (0,7.261) 9.对两个总体方差相等性进行检验(H 1:σ12≠σ22)。
检验的P 值越小说明( )A.两样本方差的差别越大B.两总体方差的差别越大C.越有信心断定两样本方差有差别D.越有信心断定两总体方差有差别 10.在方差分析中,组内平方和是指( ) A 各水平内部的观察值与其均值的离差平方和 B 各水平总体均值之间的离差平方和 C 由各水平效应不同所引起的离差平方和 D 试验条件变化所引起的离差平方的总和二、多项选择题(在5个备选答案中选择2-5个正确答案)1.若θ是待检验参数,θ0代表参数θ的某个具体数值。
下列假设检验形式写法错误的有( )A H 0:θ=1,H 1:θ<1B H 0:θ0=100,H 1:θ0<100C H 0:θ≥1,H 1:θ>1D H 0:θ=100,H 1:θ≤100E H 0:θ≠1,H 1:θ=12.某机场的塔台面临一个决策问题:如果荧幕上出现一个小的不规则点,并逐渐接近飞机时,工作人员必须作出判断:H 0:一切正常,那只是荧幕上受到一点干扰罢了;H 1:可能会发生碰撞意外。
在这个问题中( )A.错误地发出警报属于第一类错误B.错误地发出警报属于第二类错误C.错误地发出警报的概率为αD.错误地发出警报的概率为β E . α的数值宜小3.随机抽取200个家庭,测得拥有汽车的家庭占26.5%,若要求检验总体这一比率是否超过了25%,下列陈述中正确的有( )A.此检验应为双侧检验B.此检验应为单侧检验C.200/%5.73%5.26|%25%5.26|⨯-=ZD.200/%5.73%5.26%25%5.26⨯-=ZE.200/%75%25%25%5.26⨯-=Z4.若采用方差分析法来推断某个因素对所考察的指标有无显著影响,该因素有K 个水平,样本容量为n ,则下列表述中正确的有( )A 检验统计量=组间方差/组内方差B 组间方差=组间平方和/(K-1)C 检验统计量=组间平方和/组内平方和D 组间方差=组间平方和/(n-K )E 检验统计量的分布为F (K-1,n-K )5.运用单因素方差分析法,则下列表述中正确的有( ) A 组间方差显著大于组内方差时,该因素对所考察指标的影响显著 B 组内方差显著大于组间方差时,该因素对所考察指标的影响显著C拒绝原假设时,可推断各水平的效应完全没有相同的D拒绝原假设时,可推断各水平的效应是不完全相同的E各水平下的样本单位数可以相等也可以不等三、判断分析题(判断正误,并简要说明理由)1.有个研究者猜测,某贫困地区失学儿童中女孩数是男孩数的3倍以上(即男孩数不足女孩数的1/3)。
为了对他的这一猜测进行检验,拟随机抽取50个失学儿童构成样本。
那么原假设可以为:H0:P≤1/3。
2.对某一总体均值进行假设检验,H0:μ=100,H1:μ≠100。
检验结论是:在1%的显著性水平下,应拒绝H0。
据此可认为:(1)对原假设进行检验的P值小于1%;(2)总体均值的真实值与100有很大差异。
3.假设检验与区间估计的主要区别之一是:在假设检验中,人们更关注小概率事件是否发生,而区间估计立足于以大概率进行推断。
4.其他条件不变的情况下,增大样本量n对统计推断产生的影响有:(1)使置信区间的宽度增加;(2)假设检验犯两类错误的概率减小;(3)假设检验的P值增大。
四、简答题1.采用某种新生产方法需要追加一定的投资。
但若根据试验数据,通过假设检验判定该新生产方法能够降低产品成本,则这种新方法将正式投入使用。
(1)如果目前生产方法的平均成本为350元,试建立合适的原假设和备择假设。
(2)对你所提出的上述假设,发生第一、二类错误分别会导致怎样的后果?2.对一个总体的方差及两个总体方差之比进行检验时,分别应如何构建检验统计量?3.某研究报告指出,用于治疗慢性萎缩性胃炎的传统药物的有效率只有85%,而通过假设检验证明,最新研制的一种药物的有效率显著提高。
对于这个结论,人们至少还希望了解哪些相关信息?4.简述方差分析的基本思想。
五、计算题1.有一种电子元件,要求其使用寿命不得低于1000小时。
已知这种元件的使用寿命服从标准差为100小时的正态分布。
现从一批元件中随机抽查了25件,测得平均使用寿命为972小时。
(1)试在0.05的显著性水平下,检验这批电子元件是否合格;(2)假如上述样本平均寿命是对50件样品检查的结果,其他条件不变,判断这批电子元件是否合格。
2.根据长期正常生产的资料可知,某厂所产维尼纶的纤度服从正态分布,其方差为0.0025。
现从某日产品中随机抽出20根,测得样本方差为0.0042。
试判断该日纤度的波动与平时有无显著差异(取 =0.10)?3.某化肥厂采用自动包装机包装化肥。
正常工作状态下,每包重量服从均值为50kg、标准差为0.3 kg的正态分布。
从某日生产的产品中随机抽取9包,测得重量分别为:50.4,50.1,49.5,49.3,50.3,50.2,49.8,50.1,49.2。
要求分别在下列两种情况下,检验该日自动包装机的工作是否正常(显著性水平为0.05):(1)方差稳定不变;(2)方差有可能不稳定。
4.某种疾病传统治疗方法的治愈率为70%。
最近研究出一种新疗法。
对200名患者试用这种新疗法后,治愈了152人。
试问这一试验数据能否说明新疗法确实比传统方法更加有效?以0.10的显著性水平进行检验。