高斯求和讲解
- 格式:docx
- 大小:24.71 KB
- 文档页数:4
四年级数学高斯求和讲解德国著名数学家高斯幼年时代聪明过人.上学时.有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后.全班同学都在埋头计算.小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数.每对数的和都相等。
于是.小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法.真是聪明极了.简单快捷.并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列.数列中的每一个数称为一项.其中第一项称为首项.最后一项称为末项。
后项与前项之差都相等的数列称为等差数列.后项与前项之差称为公差。
例如:(1)1.2.3.4.5.….100;(2)1.3.5.7.9.….99;(3)8.15.22.29.36.….71。
其中(1)是首项为1.末项为100.公差为1的等差数列;(2)是首项为1.末项为99.公差为2的等差数列;(3)是首项为8.末项为71.公差为7的等差数列。
由高斯的巧算方法.得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1.2.3.….1999是等差数列.首项是1.末项是1999.共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前.一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11.12.13.….31是等差数列.首项是11.末项是31.共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时.有时项数并不是一目了然的.这时就需要先求出项数。
小学奥数题讲解:高斯求和(等差数列)德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好能够分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
四年级数学高斯求和讲解德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
高斯求和计算公式介绍【示例范文仅供参考】---------------------------------------------------------------------- 高斯求和公式为:末项=首项+(项数-1)公差,项数=(末项-首项)公差+1,首项=末项-(项数-1)公差,和=(首项+末项)项数2,即高斯求和公式就是对一个等差数列公差为1时的求和,这个数列的和等于这个数列的首项加上这个数列的末项之和乘以这个数列的项数的积再除以2。
1、高斯求和公式:和=(数列首项+数列末项)项数2,末项=首项+(项数-1)公差,项数=(末项-首项)公差+1,首项=末项-(项数-1)公差。
用数学表达式表示为假设数列为等差数列,为这个等差数列的和,d为这个等差数列的公差,n表示这个等差数列的项数,,则有以下公式:高斯求和公式(即d=1时)有:=()n=+(n-1)n=()+1=-n+1【例题】求1+2+3+...+200的值。
1+2+3+...+200=(1+200)200=201002、等差数列求和公式:假设数列为等差数列,为这个等差数列的和,d为这个等差数列的公差(d1),n表示这个等差数列的项数,,则有以通用下公式:=+(n-1)dn=+1-(n-1)d=n+n(n-1)d【例题】求10,20,30,40,50,...,1000的和。
解析:从题中可以知道这个数列的公差为10,首先项为10,末项为1000,项数n=(1000-10)10+1=100。
则有=100+100(100-1)10=505003、高斯公式历史来源:高斯全名为约翰·卡尔·弗里德里希·高斯,是近代数学的奠基人之一,是历史上最重要的数学家之一,号称为“数学王子”。
高斯的数学天赋,早在童年时期就表现出来了,在7岁那年,高斯第一次上学,头两年都平淡而过。
在高斯10岁那年,他进入了学习数学的班次,这是一个首次创办的班次,当时数学老师布特纳给学生出了一道题即从1加到100的和,老师一出完题,高斯就把正确答案写出来了,不过这好像只是一个美丽的传说。
四年级数学上册高斯求和讲解德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
巧妙求和一、考点、热点回顾若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
列如:3,6,9……96,这是一个首项为3,末项为96,项数为32,公差为3的等差数列。
这一周,我们将学习“等差数列求和”。
为了更好地掌握此类问题,我们需要记住三个公式:通项公式:第n项=首项+(项数-1)⨯公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)⨯项数÷2在等差数列中,只要知道首项、末项、项数、公差这个量中的三个,就可以利用通项公式或项数公式及求和公式求和。
二、典型例题例1. 有一个数列,4、10、16、22、……52,这个数列共有多少项?练一练:(1)等差数列红,首项=1,末项=39,公差=2.这个等差数列共有多少项?(2)有一个等差数列:2、5、8、11、……101,这个等差数列共有多少项?(3)已知等差数列11、16、21、26……1001,问这个数列共有多少项?例2.有一等差数列:3、7、11、15……这个等差数列的第100项是多少?练一练:(1)一等差数列,首项=3,公差=2,项数=10,它的末项是多少?(2) 求等差数列1、4、7、10……这个等差数列的第30项?(3)求等差数列2、6、10、14……这个等差数列的第100项?例3.有这样 一列数,1、2、3、4……99、100.请你求出这列数各项相加的和?想一想:上面的数列是公差为1的特殊等差数列,于是我们可以用公式计算:总和=(首项+末项)⨯项数÷2。
练一练:计算下列各题:(1) 50494321++++++(2) 759876+++++(3) 60619899100+++++例4.求等差数列2、4、6……48、50的和。
【思路导航】这个数列是等差数列,我们可以用公式计算。
高斯求和的故事高斯求和,是数学中一个经典的问题,也是数学天才高斯小时候的一个故事。
当高斯还是一个小学生的时候,他的老师给他们布置了一个任务,让他们计算1到100的和。
其他同学开始依次相加,而高斯却很快就给出了答案,5050。
这让老师很吃惊,于是他问高斯是怎么计算出来的。
高斯告诉老师,他发现了一个规律,1加100等于101,2加99等于101,3加98等于101……依次类推,他发现所有的和都是101,而一共有100个这样的和,所以答案就是101乘以100再除以2,得到5050。
这个故事展示了高斯天才般的数学头脑,也展示了高斯求和的方法。
高斯求和是指对连续的自然数求和的问题,即1加2加3加……加n的和。
高斯通过发现了一个规律,从而得出了通用的求和公式,n(n+1)/2。
这个公式简洁而优美,可以快速计算出任意连续自然数的和,而不需要逐个相加。
高斯求和的故事告诉我们,数学并不是一成不变的死知识,而是充满了创造力和想象力的活的学科。
高斯通过观察和思考,发现了数学中的规律,从而得出了通用的解决方法。
这种创造性的思维方式,不仅在数学中有用,也可以在其他领域发挥作用。
除了在数学中有重要的应用外,高斯求和的故事还给我们启示,即在解决问题时,要善于观察和总结规律。
有时候,问题的解决方法并不一定是最直接的逐个计算,而是通过发现规律,找到通用的解决方式。
这种思维方式,可以帮助我们更高效地解决问题,也可以激发我们的创造力和想象力。
总之,高斯求和的故事不仅展示了高斯天才般的数学头脑,也告诉我们解决问题时要善于观察和总结规律。
数学中的高斯求和问题,不仅有着重要的应用,也蕴含着解决问题的智慧和方法。
希望我们能够像高斯一样,善于观察,善于总结,发现问题的本质,找到通用的解决方式。
四年级数学上册高斯求和讲解德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050.高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51.1~100正好可以分成这样的50对数,每对数的和都相等.于是,小高斯把这道题巧算为(1+100)×100÷2=5050.小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题.若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项.后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差.例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列.由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2.例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数.由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000.注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列.例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项).原式=(11+31)×21÷2=441.在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数.根据首项.末项.公差的关系,可以得到项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1).例3 3+7+11+…+99=?分析与解:3,7,11,…,99是公差为4的等差数列,项数=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275.例4 求首项是25,公差是3的等差数列的前40项的和.解:末项=25+3×(40-1)=142,和=(25+142)×40÷2=3340.利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题.例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍.问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列.解:(1)最大三角形面积为(1+3+5+…+15)×12=[(1+15)×8÷2]×12=768(厘米2).(2)火柴棍的数目为3+6+9+…+24=(3+24)×8÷2=108(根).答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成.例6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里.这时盒子里共有多少只乒乓球?分析与解:一只球变成3只球,实际上多了2只球.第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球.因此拿了十次后,多了2×1+2×2+…+2×10=2×(1+2+ (10)=2×55=110(只).加上原有的3只球,盒子里共有球110+3=113(只).综合列式为:(3-1)×(1+2+…+10)+3=2×[(1+10)×10÷2]+3=113(只).。
第1讲高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为〔1+100〕×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列〞的求和问题。
例如:〔1〕1,2,3,4,5, (100)〔2〕1,3,5,7,9, (99)〔3〕8,15,22,29,36, (71)其中〔1〕是首项为,末项为,公差为的等差数列;〔2〕是首项为,末项为,公差为的等差数列;〔3〕是首项为,末项为,公差为的等差数列;对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;或者换句话说,各项和等于中间项乘以项数。
即为中项定理【例题讲解及思维拓展训练】例1 1+2+3+…+1999=?【思维拓展训练一】1、11+12+13+…+31=?2、3+7+11+…+99=?例2〔2+4+6+......+2012〕-〔1+3+5+ (2011)【思维拓展训练二】1、〔7+9+11+......+25〕-〔5+7+9+ (23)2、1+2-3+4+5-6+7+8-9+……+58+59-60例3 求首项是25,公差是3的等差数列的前40项的和。
【思维拓展训练三】1、求首项是34,公差是5的等差数列的前50项的和。
例4 求所有加6以后被11整除的三位数的和【思维拓展训练四】1、100以内所有加5后是6的倍数的数的和是多少?2、在1——400中,所有不是9的倍数的数的和是多少?3、求所有被7除余数是1的三位数的和?例5 在以下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。
第3讲高斯求和
德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:
1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:
1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为
(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:
(1)1,2,3,4,5, (100)
(2)1,3,5,7,9, (99)
(3)8,15,22,29,36, (71)
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:
和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?
分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得
原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?
分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
根据首项、末项、公差的关系,可以得到
项数=(末项-首项)÷公差+1,
末项=首项+公差×(项数-1)。
例3 3+7+11+…+99=?
分析与解:3,7,11,…,99是公差为4的等差数列,
项数=(99-3)÷4+1=25,
原式=(3+99)×25÷2=1275。
例4 求首项是25,公差是3的等差数列的前40项的和。
解:末项=25+3×(40-1)=142,
和=(25+142)×40÷2=3340。
利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。
例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。
问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?
分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:
由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。
解:(1)最大三角形面积为
(1+3+5+…+15)×12
=[(1+15)×8÷2]×12
=768(厘米2)。
(2)火柴棍的数目为
3+6+9+…+24
=(3+24)×8÷2=108(根)。
答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。
例6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,
将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。
这时盒子里共有多少只乒乓球?
分析与解:一只球变成3只球,实际上多了2只球。
第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球。
因此拿了十次后,多
了
2×1+2×2+…+2×10
=2×(1+2+ (10)
=2×55=110(只)。
加上原有的3只球,盒子里共有球110+3=113(只)。
综合列式为:
(3-1)×(1+2+…+10)+3
=2×[(1+10)×10÷2]+3=113(只)。
?。