第五讲-归一问题.
- 格式:doc
- 大小:65.50 KB
- 文档页数:6
第五讲-归一问题第五讲归一问题为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
例1 一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?分析为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米,即蜗牛的速度,然后以这个数目为依据按要求算出结果。
解:①小蜗牛每分钟爬行多少分米? 12÷6=2(分米)② 1小时爬几米?1小时=60分。
2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。
还可以这样想:先求出题目中的两个同类量(如时间与时间)的倍数(即60分是6分的几倍),然后用1倍数(6分钟爬行12分米)乘以倍数,使问题得解。
解:1小时=60分钟12×(60÷6)=12×10=120(分米)=12(米)或 12÷(6÷60)=12÷0.1=120(分米)=12(米)答:小蜗牛1小时爬行12米。
例2 一个粮食加工厂要磨面粉20000千克.3小时磨了6000千克.照这样计算,磨完剩下的面粉还要几小时?方法1:分析通过3小时磨6000千克,可以求出1小时磨粉数量.问题求磨完剩下的要几小时,所以剩下的量除以1小时磨的数量,得到问题所求。
解:(20000-6000)÷(6000÷3)=7(小时)答:磨完剩下的面粉还要7小时。
方法2:用比例关系解。
归一归总应用题归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据求出单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。
又称“单归一。
”两次归一问题,用两步运算就能求出“单一量”的归一问题。
又称“双归一。
”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
【数量关系式】单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例如:一个织布工人,在七月份织布4774 米,照这样计算,织布6930 米,需要多少天?归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
【数量关系式】单位数量×单位个数÷另一个单位数量= 另一个单位数量例:修一条水渠,原计划每天修800米,6天修完。
实际4天修完,每天修了多少米?归一和归总的区别:因为要求出每天修的长度,就必须先求出水渠的长度。
所以也把这类应用题叫做“归总问题”。
不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。
基础热身:1.一个科学实验小组3小时做了5次试验,用同样的方法,从上午9时到下午6时,可以做几次实验?2.学校食堂5天用粮510千克,照这样计算,7天用粮多少千克?3570千克能用一个月吗?3.王红计划利用一周的时间看完一本224页的书,实际前3天看了99页,照这样计算,她一周内能看完吗?4.普通列车原来每小时行56千米列车提速后,每小时比原来快21千米,要行是原来5.5小时的路程,现在可以缩短几现在可以缩短几小时?5.某粮食加工厂用6台同样型号的碾米机2.5小时碾米5100千克,照这样计算,用4台这样的碾米机工作8小时可以碾米多少千克?6.某粮食种植专业户用拖拉机耕地,2台4小时耕地0.96公顷,5台这样的拖拉机,要耕0.36公顷的地需要多少小时?能力拓展:1.某村收割玉米,24人12天可收割完,现在24人收割4天后又增加8人,还需几天才能收割完?2.战士们挖一条长90000米的战壕,30人每天挖9小时,15天挖了全长的36%,以后人数减少51 ,每天工作时间延长31 ,完成余下的工程要比前一段时间多用几天?3.服装厂要加工一批服装,第一车间和第二车间同时加工60天正好完成。
归一归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,【总量】,反归一是求包含多少个单一量.【求份数】解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)%份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数[小结]总工作量=每份的工作量(单一量)⨯份数 (正归一)例如⑴题份数=总工作量÷每份的工作量(单一量) (反归一)例如⑵题每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米【正】【例 2】{【例 3】小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米【正】【例 4】一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字【正】【例 5】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时【反】【例 6】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天【反】【同例1】【例 7】一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时【反】【例 8】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可生产牛奶多少千克【★★★★★】同例2【例 9】^【例 10】某车间用4台车床5小时生产零件600个,照这样算,增加3台同样的车床后,(1)8小时可以生产多少个零件(2)如果要生产6300个零件几小时可完成【★★★★★】同例4【例 11】3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名【★★★★★】同例6【例 12】孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢【★★★★★】同例6】【例 13】某玩具厂30天要生产玩具12000件,由于技术革新,每天比原计划多制造了200件,实际多少天就完成了生产任务同例5【例 14】&【例 15】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人【★★★★★】同例6【例 16】3个工人10小时加工了3300个零件,如果人数增加2人,时间缩小5个小时,可以制造多少零件【★★★★★】同例6二、归总问题【例 17】修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成【归总】【例 18】学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天【归总】~【例 19】某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天【归总】【例 20】某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人【归总】【例 21】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱【★★★★★】【同例8】《归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。
精讲精练 四年级思维数学 第五讲归一和归总思维目标:运用正确的方法求出归一和归总类型的应用题。
数学目标:掌握减法性质和除法的性质思维:归一问题:先算出一份是多少。
归总问题:先算出总数是多少。
数学:1、减法的性质:一个数连续减去两个数,可以先把两个减数加起来,再从被减数里减去。
2、除法的性质:一个数连续除以两个数,可以先把两个除数乘起来,再去除被除数。
【例1】学校买3只同样的足球用去240元,照这样计算,买8只同样的足球需要多少元? 金钥匙:知道3只同样的足球用去240元,那么我们就可以求出1只足球的价格,知道1只足球的价格,就可以求出8只的价钱了:240÷3=80(元)…………归一80×8=640(元)…………归总答:买8只同样的足球需要640元。
试金石:1、 一台幻灯机,第一次放映50张幻灯片用了7秒钟,照这样计算,第二次用同样的幻灯机放映150张幻灯片要多少时间?2、某商场在进行促销活动,3包同样的餐巾纸售价7元,这天售货员卖这种餐巾纸共收款 2170元,那么这天共卖出多少包这样的餐巾纸?学习目标 知识梳理3.6个工人5天能生产360个的玩具,照这样计算,10个工人7天可以生产多少个同样玩具?【例2】小杰用相同的速度4分钟走了280米的路,那么照这样的速度,走490米路需要多少时间?金钥匙:这题我们要运用“速度=路程÷时间”来求出速度。
知道速度后,再运用“时间=路程÷速度”来求出最终的解:280÷4=70米/分490÷70=7分钟答:走490米路需要7分钟。
试金石:1、一列动车从甲地开往乙地,每小时行200千米,5小时到达,动车提速后,4小时可以到达乙地,动车提速后每小时可以行多少千米?2、某车间要完成一批零件,计划平均每天生产420个零件,30天可以完成,如果每天比计划多生产30个,那么几天可以完成?3、5辆相同的卡车7次共运水果140吨,照这样计算,如果要求6次就运走192吨,要用同样的卡车多少辆?。
第五讲归一问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。
用这种解题思路解答的应用题,称为归一问题。
所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)分析:以一根钢轨的重量为单一量。
(1)一根钢轨重多少千克?1900÷4=475(千克)。
(2)95000千克能制造多少根钢轨?95000÷475=200(根)。
解:95000÷(1900÷4)=200(根)。
答:可以制造200根钢轨。
例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?分析:以1头奶牛1天产的牛奶为单一量。
(1)1头奶牛1天产奶多少千克?630÷5÷7=18(千克)。
(2)8头奶牛15天可产牛奶多少千克?18×8×15=2160(千克)。
解:(630÷5÷7)×8×15=2160(千克)。
答:可产牛奶2160千克。
例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?分析与解:以1台磨面机1时磨的面粉为单一量。
(1)1台磨面机1时磨面粉多少千克?2400÷3÷2.5=320(千克)。
(2)8台磨面机磨25600千克面粉需要多少小时?25600÷320÷8=10(时)。
综合列式为25600÷(2400÷3÷2.5)÷8=10(时)。
例4 4辆大卡车运沙土,7趟共运走沙土336吨。
现在有沙土420吨,要求5趟运完。
问:需要增加同样的卡车多少辆?分析与解:以1辆卡车1趟运的沙土为单一量。
【最新整理,下载后即可编辑】第五讲归一问题为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
例1一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?分析为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米,即蜗牛的速度,然后以这个数目为依据按要求算出结果。
解:①小蜗牛每分钟爬行多少分米?12÷6=2(分米)②1小时爬几米?1小时=60分。
2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。
还可以这样想:先求出题目中的两个同类量(如时间与时间)的倍数(即60分是6分的几倍),然后用1倍数(6分钟爬行12分米)乘以倍数,使问题得解。
解:1小时=60分钟12×(60÷6)=12×10=120(分米)=12(米)或12÷(6÷60)=12÷0.1=120(分米)=12(米)答:小蜗牛1小时爬行12米。
例2一个粮食加工厂要磨面粉20000千克.3小时磨了6000千克.照这样计算,磨完剩下的面粉还要几小时?方法1:分析通过3小时磨6000千克,可以求出1小时磨粉数量.问题求磨完剩下的要几小时,所以剩下的量除以1小时磨的数量,得到问题所求。
解:(20000-6000)÷(6000÷3)=7(小时)答:磨完剩下的面粉还要7小时。
方法2:用比例关系解。
归一问题〔一〕知识揭示1、归一法的来历我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!2、归一法的分类归一问题有两种根本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?3、正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
〔二〕例题讲解例1.一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?例2.一个粮食加工厂要磨面粉20000千克.3小时磨了6000千克.照这样计算,磨完剩下的面粉还要几小时?例3.学校买来一些足球和篮球.买3个足球和5个篮球共花了281元;买3个足球和7个篮球共花了355元.现在要买5个足球、4个篮球共花多少元?例4.一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?1例5.7辆“黄河牌〞卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆?教学练习1、一批产品,28人25天可以生产完,生产5天后,此项任务要提前10天完成,应增加_____人.2、某食堂存有16人可吃15天的米,16人吃了5天后,走了6人,余下的可吃_____天.3、小明3小时走6千米路,照这样计算他 7小时走了多少千米?4、5辆载重量相同的卡车6趟运走粮食300吨,照这样计算,7辆这样的卡车8趟运粮食多少吨?如果仓库有粮食1200吨,要求5次运完,那么须增加多少辆车?5、妈妈买水果,如果她买了3斤苹果和5斤荔枝,那么需要41元,如果买了6斤苹果和5斤荔枝那么需要47元。
归一问题的公式
【原创实用版】
目录
1.归一问题的定义与背景
2.归一问题的公式推导
3.归一问题的公式应用
4.总结
正文
1.归一问题的定义与背景
归一问题,又称为统一问题,是一种常见的数学问题。
它的主要目标是找到一个数或者一个式子,使得这个数或式子可以同时满足多个条件。
例如,在几何学中,归一问题可能是找到一个长度,使得这个长度可以同时满足两个已知图形的边长比例。
归一问题在数学、物理、化学等各个领域都有广泛的应用。
2.归一问题的公式推导
归一问题的公式推导过程较为复杂,它涉及到高深的数学知识,如方程式、代数、微积分等。
具体而言,对于一个归一问题,我们首先需要根据题目条件建立数学模型,然后通过一系列的变量替换、方程式推导和运算,最终得到一个或一组解。
这个解即为满足所有条件的数或式子。
3.归一问题的公式应用
归一问题的公式在实际应用中具有重要的价值。
它可以帮助我们解决许多实际问题,如在物理学中,通过归一问题的公式,我们可以找到一个物体在给定条件下的运动轨迹;在化学中,它可以帮助我们计算化学反应的平衡常数等。
4.总结
总的来说,归一问题是一种具有广泛应用的数学问题,它的解决涉及到复杂的公式推导和运算。
第五讲归一问题
为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!
归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?
正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
例1一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?
分析为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米,即蜗牛的速度,然后以这个数目为依据按要求算出结果。
解:①小蜗牛每分钟爬行多少分米? 12÷6=2(分米)
② 1小时爬几米?1小时=60分。
2×60=120(分米)=12(米)
答:小蜗牛1小时爬行12米。
还可以这样想:先求出题目中的两个同类量(如时间与时间)的倍数(即60分是6分的几倍),然后用1倍数(6分钟爬行12分米)乘以倍数,使问题得解。
解:1小时=60分钟
12×(60÷6)=12×10=120(分米)=12(米)
或 12÷(6÷60)=12÷0.1=120(分米)=12(米)
答:小蜗牛1小时爬行12米。
例2一个粮食加工厂要磨面粉20000千克.3小时磨了6000千克.照这样计算,磨完剩下的面粉还要几小时?
方法1:
分析通过3小时磨6000千克,可以求出1小时磨粉数量.问题求磨完剩下的要几小时,所以剩下的量除以1小时磨的数量,得到问题所求。
解:(20000-6000)÷(6000÷3)=7(小时)
答:磨完剩下的面粉还要7小时。
方法2:用比例关系解。
解:设磨剩下的面粉还要x小时。
6000x=3×14000
x=7(小时)
答:磨完剩下的面粉还要7小时。
例3学校买来一些足球和篮球.已知买3个足球和5个篮球共花了281元;买3个足球和7个篮球共花了355元.现在要买5个足球、4个篮球共花多少元?
分析要求5个足球和4个篮球共花多少元,关键在于先求出每个足球和每个篮球各多少元.根据已知条件分析出第一次和第二次买的足球个数相等,而篮球相差7-5=2(个),总价差355-281=74(元).74元正好是两个篮球的价钱,从而可以求出一个篮球的价钱,一个足球的价钱也可以随之求出,使问题得解。
解:①一个篮球的价钱:(355-281)÷(7-5)
=37元
②一个足球的价钱:(281-37×5)÷3=32(元)
③共花多少元? 32×5+37×4=308(元)
答:买5个足球,4个篮球共花308元。
例4一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?
分析要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。
解:①进水速度:480÷8=60(吨/小时)
②排水速度:480÷6=80(吨/小时)
③排空全池水所需的时间:480÷(80-60)=24(小时)
列综合算式:
480÷(480÷6-480÷8)=24(小时)
答:两管齐开需24小时把满池水排空。
例5 7辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆?
方法1:
分析要想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求5趟运完560吨沙土,每趟需多少辆卡车,应该知道一辆卡车一次能运多少吨沙土。
解:①一辆卡车一次能运多少吨沙土?
336÷6÷7=56÷7=8(吨)
②560吨沙土,5趟运完,每趟必须运走几吨?
560÷5=112(吨)
③需要增加同样的卡车多少辆?
112÷8-7=7(辆)
列综合算式:
560÷5÷(336÷6÷7)-7=7(辆)
答:需增加同样的卡车7辆。
方法2:
在求一辆卡车一次能运沙土的吨数时,可以列出两种不同情况的算式:①336÷6÷7,②336÷7÷6.算式①先除以6,先求出7辆卡车1次运的吨数,再除以7求出每辆卡车的载重量;算式②,先除以7,求出一辆卡车6次运的吨数,再除以6,求出每辆卡车的载重量。
在求560吨沙土5次运完需要多少辆卡车时,有以下几种不同的计算方法:
求出一共用车14辆后,再求增加的辆数就容易了。
例6某车间要加工一批零件,原计划由18人,每天工作8小时,7.5天完成任务.由于缩短工期,要求4天完成任务,可是又要增加6人.求每天加班工作几小时?
分析我们把1个工人工作1小时,作为1个工时.根据已知条件,加工这批零件,原计划需要多少“工时”呢?求出“工时”数,使我们知道了工作总量.有了工作总量,以它为标准,不管人数增加或减少,工期延长或缩短,仍然按照原来的工作效率,只要能够达到加工零件所需“工时”总数,再求出要加班的工时数,问题就解决了。
解:①原计划加工这批零件需要的“工时”:
8×18×7.5=1080(工时)
②增加6人后每天工作几小时?
1080÷(18+6)÷4=11.25(小时)
③每天加班工作几小时? 11.25-8=3.25(小时)
答:每天要加班工作3.25小时。
例7甲、乙两个打字员4小时共打字3600个.现在二人同时工作,在相同时间内,甲打字2450个,乙打字2050个.求甲、乙二人每小时各打字多少个?
分析已知条件告诉我们:“在相同时间内甲打字2450个,乙打字2050个.”既然知道了“时间相同”,问题就容易解决了.题目里还告诉我们:“甲、乙二人4小时共打字3600个.”这样可以先求出“甲乙二人每小时打字个数之和”,就可求出所用时间了.
解:①甲、乙二人每小时共打字多少个?
3600÷4=900(个)
②“相同时间”是几小时?
(2450+2050)÷900=5(小时)
③甲打字员每小时打字的个数:
2450÷5=490(个)
④乙打字员每小时打字的个数:
2050÷5=410(个)
答:甲打字员每小时打字490个,乙打字员每小时打字410个。
还可以这样想:这道题的已知条件可以分两层.第一层,甲乙二人4小时共打字3600个;第二层,在相同时间内甲打字2450个,乙打字2050个.由这两个条件可以求出在相同的时间内,甲乙二人共打字 2450+2050=4500(个);打字 3600个用4小时,打字4500个用几小时呢?先求出4500是3600的几倍,也一定是4小时的几倍,即“相同时间”。
解:①“相同时间”是几小时?
4×[(2450+2050)÷3600]=5(小时)
②甲每小时打字多少个?
2450÷5=490(个)
③乙每小时打字多少个?
2050÷5=410(个)
答:甲每小时打字490个,乙每小时打字410个.
习题五
1.花果山上桃树多,6只小猴分180棵.现有小猴72只,如数分后还余90棵,请算出桃树有几棵?
2.5箱蜜蜂一年可以酿75千克蜂蜜,照这样计算,酿300千克蜂蜜要增加几箱蜜蜂?
3.4辆汽车行驶300千米需要汽油240公升.现有5辆汽车同时运货到相距800千米的地方,汽油只有1000公升,问是否够用?
4.5台拖拉机24天耕地12000公亩.要18天耕完54000公亩土地,需要增加同样拖拉机多少台?
习题五解答
1.180÷6×72+90=2250(棵)
或:180×(72÷6)+90=2250(棵)
答:桃树共有2250棵。
2.300÷(75÷5)-5=15(箱)
或 5×[(300-75)÷75]=5×3=15(箱)
答:要增加 15箱蜜蜂。
3.提示:要想得知1000公升汽油是否够用,先算一算行800千米需要的汽油,然后进行比较.如果大于1000公升,说明不够用;小于或等于 1000公升,说明够用。
240÷4÷300×5×800=800(公升)
800公升<1000公升,说明够用.
答:1000公升汽油够用。
4.提示:先求出1台拖拉机1天耕地公亩数,然后求出18天耕54000公亩需要拖拉机台数,再求增加台数。
答:需要增加 25台拖拉机.。