新人教版17.1勾股定理(3)
- 格式:ppt
- 大小:1.73 MB
- 文档页数:23
17.1 勾股定理(3)一、教学目标知识与技能1.利用勾股定理,能在数轴上找到表示无理数的点.2.进一步学习将实际问题转化为直角三角形的数学模型,•并能用勾股定理解决简单的实际问题.过程与方法1.经历在数轴上寻找表示地理数的总的过程,•发展学生灵活勾股定理解决问题的能力.2.在用勾股定理解决实际问题的过程中,体验解决问题的策略,•发展学生的动手操作能力和创新精神.3.在解决实际问题的过程中,学会与人合作,•并能与他人交流思维过程和结果,形成反思的意识.情感、态度与价值观1.在用勾股定理寻找数轴上表示无理数点的过程中,•体验勾股定理的重要作用,并从中获得成功的体验,锻炼克服困难的意志,建立自信心.2.在解决实际问题的过程中,•形成实事求是的态度以及进行质疑和独立思考的习惯.二、教学重、难点重点:……这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.三、教学准备多媒体课件四、教学方法分组讨论,讲练结合五、教学过程(一)复习回顾,引入新课复习勾股定理的内容。
本节课探究勾股定理的综合应用。
思考:在八年级上册中我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?先画出图形,再写出已知、求证.探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在设计意图:上一节,我们利用勾股定理可以解决生活中的不少问题.在初一时我们……这样的无理……可以当直角三用.师生行为:学生小组交流讨论……这样的包含在直角三角形中的线段.此活动,教师应重点关注:②学生是否有克服困难的勇气和坚强的意志;③学生能否积极主动地交流合作.师:所以只需画出长1的直角三角形的斜边.生:设两直角边为a,b,根据勾股定理a2+b2=c2即a2+b2=13.若a,b 为正整数,•则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3.•所以长为13的线段是直角边为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线L垂直于OA,在L上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.(二)新课教授例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4 800米处,过了10秒后,飞机距离这个男孩头顶5 000米,飞机每小时飞行多少千米?分析:根据题意,可以画出图,A点表示男孩头顶的位置,C、B•点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得Rt△ABC中,∠C=90°,AB=5 000米,AC=4 800米.由勾股定理,得AB2=AC2+BC2.即5 0002=BC2+4 8002,所以BC=1 400米.飞机飞行1 400米用了10秒,那么它1小时飞行的距离为1 400×6×60=50 400米=504千米,即飞机飞行的速度为504千米/时.评注:这是一个实际应用问题,经过分析,问题转化为已知两边求直角三角形等三边的问题,这虽是一个一元二次方程的问题,学生可尝试用学过的知识来解决.同时注意,在此题中小孩是静止不动的.例2、如右图所示,某人在B处通过平面镜看见在B正上方5米处的A物体,•已知物体A到平面镜的距离为6米,向B点到物体A的像A′的距离是多少?分析:此题要用到勾股定理,轴对称及物理上的光的反射知识.解:如例2图,由题意知△ABA′是直角三角形,由轴对称及平面镜成像可知:AA′=2×6=12米,AB=5米;在Rt△A′AB中,A′B2=AA′2+AB2=122+52=169=132米.所以A′B=13米,即B点到物体A的像A′的距离为13米.评注:本题是以光的反射为背景,涉及到勾股定理、轴对称等知识.由此可见,数学是物理的基础.例3、在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,•问这里的水深是多少?解:根据题意,得到右图,其中D是无风时水草的最高点,BC为湖面,AB•是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD.所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36.6AC=27,AC=4.5,所以这里的水深为4.5分米.评注:在几何计算题中,方程的思想十分重要.设计意图:让学生进一步体会勾股定理在生活中的应用的广泛性,同时经历勾股定理在物理中的应用,由此可知数学是物理的基础,方程的思想是解决数学问题的重要思想.师生行为:先由学生独立思考,完成,后在小组内讨论解决,教师可深入到学生的讨论中去,对不同层次的学生给予辅导.在此活动中,教师应重点关注:②学生是否自主完成上面三个例题;②学生是否有综合应用数学知识的意识,特别是学生是否有在解决数学问题过程中应用方程的思想.例4、练习:在数轴上作出表示17的点.解:17是两直角边为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点如下图:设计意图:进一步巩固在数轴上找表示无理数的点的方法,熟悉勾股定理的应用.师生行为:由学生独立思考完成,教师巡视.此活动中,教师应重点关注:(1)生能否积极主动地思考问题;(2)能否找到斜边为17,另外两个角直边为整数的直角三角形.例5 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
优质资料---欢迎下载17.1.3 勾股定理的应用(3))a为正整数一、内容和内容解析1.内容勾股定理的应用(3))a为正整数.2.内容解析勾股定理是中学数学重要定理之一,它揭示了直角三角形三边之间的数量关系.把三角形有一个直角的“形”的特点,转化为三角形三边之间的“数”的关系,是数形结合的典范.勾股定理可以解决许多直角三角形中的计算、证明问题,它有着悠久的历史,在数学发展中起着重要的作用,在现实世界中有着广泛的应用.是初中数学教学内容的重点之一.基于以上分析,确定本节课的教学重点为:会利用勾股定理在数轴上表示出一个无理数)a为正整数的点.二、目标和目标解析1.教学目标(1))a为正整数的点.(2)经历观察—猜想—归纳—验证的数学发现过程,发展合情推理的能力,体会数形结合、化归、对应等数学思想.2.目标解析目标(1) )a为正整数为一边的直角三角形,画出)a为正整数)a为正整数的点的目标.目标(2)要求学生在学习过程中,不断运用勾股定理,体会勾股定理的教育价值。
提高)a为正整数的点的方法的同一性和灵活性.三、教学问题诊断分析通过前面的数学学习,学生已经熟练掌握勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,那么222+=.)a b ca为正整数为斜边的直角三角学生应该)a为正整数为直角边的直角三角形学生不容易想到.这一阶段的学生能积极参与数学学习活动,对数学学习有较强的好奇心和求知欲,他们能探索具体问题中的数量关系和变化规律,也能较清楚地表达解决问题的过程及所获得的解题经验,他们愿意对数学问题进行讨论,并敢于对不懂的地方和不同的观点提出自己的疑问.)a为正整数为直角边的直角三角形的另外两条边长.四、教学支持条件分析根据本节课教材内容的特点,为了帮助学生更直观、形象的观察,借助flash动画和多媒体工具教学,化静为动,化抽象为具体.五、教学过程设计1.情景激趣问题1:请同学们看投影上的两幅图片,它们是?(海螺图)数学上也有这样一幅美丽的海螺型图案,我们称它为数学海螺图.第七届国际数学教育大会的会徽就是用的这个图案.这幅数学海螺图是如何画成的呢?这节课的最后我再为同学们揭晓答案.数学海螺图设计意图:通过联系生活中的实物,将数学几何图形与实际联系,激发学生学习数学的兴趣.2.复习引入我们知道,有理数和无理数统称为实数,实数和数轴上的点是一一对应的.请用数轴上的点表示下列各数(请学生上黑板指)问题2:这些数都是什么类型的实数?(有理数)我们能较容易的在数轴上找到它们对应的点.)a为正整数的无理数表示出来是我们这节课要学习的内.容.设计意图:通过在网格中发现可以沿网格线构造直角边为整数的直角三角形,所求线段为斜边,利用勾股定理求出相应线段的长.问题3:这里用什么方法求出线段AB、CD、EF的长?总结:构造直角三角形,利用勾股定理求得第三边.设计意图)a为正整数的线段.3.画图探究活动1.可以构造一个两条直角边长都为1的直角三角形,斜边长即为如图,在数轴上找出表示1的点A,则OA=1,过点A作直线l垂直OA,在l上取点B,使AB=1.活动2:练习.1、2、在数轴上画出对应的点.先独立完成,然后小组交流画法是否一样.问题5)a为正整数的方法?归纳:构造一个直角三角形,通过先作出其余两边,再运用勾股定理构造出第三边)a为正整数.4.能力提升请先独立思考,并尝试动手画一画,然后小组内进行交流讨论.可能出现的画法预设:3不能分成两个正整数的平方和,引导学生自己想方法构造设计意图.1不是定向思维只能把无理数作为斜边.种画法,并比较这两种画法.造一个直角三角形))a为正整数的点有一个更直观生动的认识,并能体会画图方法的灵活性.5.回归图形回到本节课的开始,数学海螺图是如何画成的呢?设计意图:前后呼应,让学生感受数学的图形之美,体会学习数学的价值.6.课堂小结(1)本节课你学到了什么知识?(2)这个知识是用什么方法研究的?设计意图)a为正整数的线段的方法.体会数形结合思想和化归思想.六、目标检测设计.1.a为正整数的线段这一运用的掌握情况.2.在数轴上画出表示8的点.设计意图:考查学生灵活运用所学知识的能力.。
人教版数学八年级下册17.1《勾股定理》教学设计3一. 教材分析人教版数学八年级下册17.1《勾股定理》是初中数学的重要内容,它揭示了直角三角形三边之间的数量关系,为学生提供了解决实际问题的工具。
本节课的内容是在学生已经掌握了三角形性质、勾股定理的逆定理等知识的基础上进行学习的。
教材通过丰富的例题和练习,帮助学生深入理解和掌握勾股定理,并能够运用它解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了三角形性质、勾股定理的逆定理等知识,具备了一定的逻辑思维能力和空间想象能力。
但是,对于勾股定理的证明和应用,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导和指导。
三. 教学目标1.知识与技能目标:使学生理解和掌握勾股定理,能够运用勾股定理解决实际问题。
2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的探究能力和合作意识。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。
四. 教学重难点1.教学重点:勾股定理的证明和应用。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法1.情境教学法:通过创设丰富的教学情境,激发学生的学习兴趣和积极性。
2.探究教学法:引导学生通过观察、操作、猜想、验证等过程,主动探究勾股定理的证明和应用。
3.合作学习法:学生进行小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学方案和教学活动。
2.学生准备:预习教材,了解勾股定理的基本概念。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形性质、勾股定理的逆定理等知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示勾股定理的定义和表述,引导学生理解直角三角形三边之间的数量关系。
3.操练(10分钟)教师提出一些运用勾股定理的问题,学生独立解答,培养学生的运用能力和解决问题的能力。
第十七章勾股定理第三课时17.1 勾股定理(3)一.教学目标:1.熟练掌握勾股定理,并能灵活的运用勾股定理解决数学中的实际问题。
2.能运用勾股定理在数轴上画出表示无理数的点,进一步体会数形结合的思想及数轴上的点与实数一一对应的理论。
3.通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质.二.重点与难点:重点:运用勾股定理解决数学中的问题。
难点:勾股定理的灵活运用。
三.学情分析:在此之前,学生已学过在数轴上表示有理数和勾股定理。
但勾股定理的运用不太熟悉。
对于一些特殊的无理数(带根号的)如何在数轴上准确表示它们。
可仿造前面有理数表示方法来学习,所以关键是借助勾股定理来用线段表示这一无理数是本节的难点。
四.教学过程:(一)回顾复习1.叙述勾股定理的内容?2. 在RT△ABC中,∠C=90°,已知:c=17 b=8 求a已知:c=13 a=5 求 b3.什么是数轴?实数与数轴上的点具有什么关系?4.在数轴上画出表示下列各数的点:3、1、0、-2.5、 -4.(二)自主学习学生阅读课本26页练习下和27页,思考并回答:1.在数轴上表示5的点到原点的距离为5. 表示-3.4的点到原点的距离为3.4,那么表示13的点,到原点的距离就是132.在数轴上要画出表示一个数的点,首先要画出表示这个数绝对值的线段.3. 如何画出表示13的线段。
由勾股定理知,直角边为1的等腰Rt△,斜边为2.因此在数轴上能表示2那么长为13的线段能否是直角边为正整数的直角三角形的斜边,通过下面的网格可以知道,两条直角边的长是2,3的直角三角形的斜边长为13。
(三)新知学习在数轴上作出表示 的点。
作法:(1)在数轴上找到点A ,使OA=3;(2)过点A 作直线垂直于OA ,在上取点B, 使AB=2,那么OB=13;(3)以原点O 为圆心,以OB 为半径作 弧,弧与数轴交于点C ,则OC=13.如图,在数轴上,点C 为表示13 的点。