弦
勾
勾
股
股
证法三: 伽菲尔德证法:
a bc
a
c
1、整体看
b
2、分割看
有趣的总统证法
美国第二十任总统伽菲尔德的证法在数学史上被传为佳话
人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,
就把这一证法称为“总统”证法。 D
bc c
C a
Aa
bD
勾股定理
如果直角三角形两直角边分别为a,b,斜边
为c,那么 a2 + b2 = c2
练习
1.在RtABC中,AB=c,BC=a,AC=b,
B=90
(1)已知a=6,b=10,求c的长度( B )
A6
B8
C 10 D 12
(2)已知a=24,c=7,求b的长度( D ).
A 20
B 11 C 13
D 25
A
c
b
B
a
C
2.在Rt△ABC中, a=5,c=13,
则下列计算正确的是 ( B )
2 、运用“勾股定理”应注意什么问题? 3、你还有什么疑惑或没有弄懂的地方?
拓展
在波平如静的湖面上,有一朵美丽的红莲 ,它高出
水面1米 ,一阵大风吹过,红莲被吹至一边,花朵齐
及水面,如果知道红莲移动A
x2+22=(x+1)2
1
C
2
H
┓
?x
B
美丽的勾股树
(×)
(2)若a、b、c为Rt△ABC的三边,则a2+b2=c2.
(×)
C不一定代表 直角三角形
的斜边哦
练习
4.求下列直角三角形中未知边的长: 5