第2章桁架结构
- 格式:pptx
- 大小:4.33 MB
- 文档页数:48
结构⼒学总复习第⼀章绪论1-1杆件结构⼒学的研究对象和任务杆件结构结构:承受荷载的建筑物和构筑物或其中的某些受⼒构件都可称之为结构。
1-2杆件结构的计算简图杆件间连接区简化为结点(铰结点、刚结点、组合结点)(1)铰结点(Hinge joint):被连接的杆件在连接处不能相对移动,但可相对转动。
(2)刚结点(Rigid joint)被连接的杆件在连接处既不能相对移动,⼜不能相对转动。
(3)组合结点同⼀结点处,有些杆件为刚结,有些为铰接。
⽀座(support)是指把结构与基础联系起来的装置。
传递荷载,固定结构的位置。
(1)活动铰⽀座(Roller support)可以转动和⽔平移动,但不能竖向移动。
提供竖向约束反⼒(2)固定铰⽀座(Hinge support)可以转动,但不能竖向移动和⽔平移动。
提供竖向和⽔平约束反⼒。
(3)固定⽀座(Fixed support)不能竖向移动、⽔平移动和转动。
提供竖向、⽔平约束反⼒和约束⼒矩(4)定向⽀座(Directional support)可以⽔平移动,不能竖向移动和转动。
提供竖向反⼒和约束⼒矩本章思考题1、杆系结构、板壳结构与实体结构的主要差别是什么?杆件结构的基本特征是它的长度远⼤于其他两个⽅向的尺度——截⾯⾼度和宽度,杆件结构是由若⼲这种杆件所组成的。
薄壁结构是厚度远⼩于其他两个尺度的结构。
实体结构是指三个⽅向的尺度为同⼀量级的结构。
例:挡⼟墙,堤坝,块式基础2、拱和梁的区别是什么?简单的说,梁在荷载作⽤下,在⽀撑处只产⽣向上的反⼒,⽽拱在荷载作⽤下,在⽀撑处不但产⽣向上的反⼒,还有⼀个⽔平⼒,这是区分梁和拱的⼀个最基本的条件4. 刚架与桁架的区别是什么?刚架是由梁和柱组成的结构,各杆件主要受弯。
刚架的结点主要是刚结点,也可以有部分的铰结点和组合结点。
桁架是由若⼲杆件在两端⽤铰联结⽽成的结构。
桁架各杆的轴线都是直线,当仅受作⽤于结点的荷载时,各杆只产⽣轴⼒。
第二章结构的几何组成分析李亚智航空学院·航空结构工程系2.1 概述结构要能承受各种可能的载荷,其几何组成要稳固。
即受力结构各元件之间不发生相对刚体移动,以维持原来的几何形状。
在任意载荷作用下,若不考虑元件变形,结构保持其原有几何形状不变的特性称为几何不变性。
在载荷作用下的系统可分为三类。
2.1.1 几何可变系统特点:不能承载,只能称作“机构”。
213 4P2’3’2.1.2 几何不变系统特点:能承载,元件变形引起几何形状的微小变化,可以称为结构。
2.1.3 瞬时几何可变系统特点:先发生明显的几何变形,而后几何不变。
P2 1 342’3’2’ 3’P213 45∞→=2321N N 123P内力巨大,不能作为结构。
N 21N 23P2由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。
系统几何组成分析的目的:(1)判断系统是否几何不变,以决定是否能作为结构使用;(2)掌握几何不变结构的组成规律,便于设计出合理的结构;(3)区分静定结构和静不定结构,以确定不同的计算方法。
2.2 几何不变性的判断2.2.1 运动学方法将结构中的某些元件看成自由体,拥有一定数量的自由度;将结构中的另一些元件看成约束。
如果没有足够多的约束去消除自由度,系统就无法保持原有形状。
所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。
1、自由度与约束 (1)自由度的定义决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。
平面一个点有2个独立坐标,故 n =2 空间一个点有3个独立坐标,故n =3xyy∆x∆AA 'xyAy Ax AzAz A 'O空间一根杆有5个自由度, 一个平面刚体(刚片、刚盘)或一根杆有3个自由度,n =3xyAy Ax AzAz A 'OBB 'αθxyy∆x∆AA 'OAx Ay θ∆一个空间刚体有6个自由度,n =6θα,,,,A A A z y x ( ), n =5(2)约束的定义约束定义为减少自由度的装置,用c 来表示。
第二章 结构的几何组成分析2-1 分析图2-27所示平面桁架的几何不变性,并计算系统的多余约束数。
3571(a)(a)解:视杆为约束,结点为自由体。
C =11,N =7×2=14f =11-7×2+3=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(b)(b)解:视杆和铰支座为约束,结点为自由体。
C =9+2+1=12,N =6×2=12f =12-6×2=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(c)(c)解:视杆和铰支座为约束,结点为自由体。
C =10+2×2=14,N =6×2=12f=14-12=2该桁架为有两个多余约束的几何不变系。
1217(d)(d)解:视杆和铰支座为约束,结点为自由体。
C =30+3=33,N =17×2=34f=33-34=-1故该桁架为几何可变系。
8(e)(e)解:视杆为约束,结点为自由体。
C =13,N =8×2=16f=13-16+3=0将1-2-3-4、5-6-7-8看作两刚片,杆3-6、杆2-7、杆4-5相互平行,由两刚片原则知,为瞬时可变系统。
6(f)(f)解:视杆和固定铰支座为约束,结点为自由体。
C =22+3×2=28,N =14×2=28f=28-28=0将12-13-14、7-11-12、1-2-3-4-5-6-7-8-9-10看作三刚片,三刚片由铰7、铰12、铰14连结,三铰共线,故该桁架为瞬时可变系统。
(g)(g)解:视杆和固定铰支座为约束,结点为自由体。
C=24+4×2=32,N=16×2=32f=32-32=0由于杆15-14-3、杆12-11-4、杆9-5相交于一点,故该桁架为瞬时可变系。
(h)(h)解:视杆和固定铰支座为约束,结点为自由体。
C=12+2×2=16,N=8×2=16f=16-16=0该桁架布局合理,加减二元体之后,无有应力的杆,故该桁架为无多余约束的几何不变系。
第三章桁架(屋架)结构只受结点荷载作用的等直杆的理想铰结体系称桁架结构。
它是由一些杆轴交于一点的工程结构抽象简化而成的。
它在历史上出现很早,公元前500年罗马人就在多瑙河上修建了桁架桥梁;后来迅速成为普遍的结构形式应用于土木工程大跨度的结构中,在房屋建筑中尤其得到广泛推广。
1.优点:受力合理、计算简单、施工方便、适应性强,对支座无横向推力,应用广泛。
2.缺点:结构高度大,侧向刚度小。
¾结构高度大增加了屋面及围护墙的用料,同时也增加了采暖、通风、采光等设备的负荷,并给音响控制带来困难。
¾侧向刚度小,对于钢屋架特别明显受压的上弦平面外稳定性差,也难以抵抗房屋纵向的侧向力,这就需要设置支撑。
一般房屋的纵向侧向力并不大,但支撑很多,都按构造(长细比)要求确定截面,故耗钢不少却未能材尽其用。
第三章桁架结构3.1桁架结构的受力特点3.2屋架结构的型式3.3屋架结构的选型与布置3.4立体桁架3.5 张弦结构3.6 桁架结构的其他型式桁架的受力与梁的区别1、上弦受压、下弦受拉,形成力偶来平衡外荷载所产生的弯矩。
2、由斜腹杆轴力中的竖向分量来平衡外荷载所产生的剪力。
3、桁架结构中,各杆单元均为轴向受拉或轴向受压构件,使材料的强度可以得到充分的发挥。
主桁架(1)直杆:组成桁架的所有各杆都是直杆,所有各杆的中心线(轴线)都在同一平面内,这一平面称为桁架的中心平面。
木材――榫接、钉连接钢桁架――焊接或螺栓连接3.1.2桁架结构计算的假定(2)节点均为铰节点:桁架的杆件与杆件相连接的节点均为铰接节点。
钢筋混凝土――刚性连接严格地说,钢桁架和钢筋混凝土桁架都应该按刚架结构计算,各杆件除承受轴力外还承受弯矩的作用。
但进一步的理论分析和工程实践经验表明,上述杆件内的弯矩所产生的应力很小,只要在节点构造上采取适当的措施,该应力对结构或构件不会造成危害,故一般计算中桁架结构节点均按铰接处理。
3.1.2桁架结构计算的假定(2)节点均为铰节点:桁架的杆件与杆件相连接的节点均为铰接节点。
第2章桁架结构桁架结构又被称为屋架结构,是一种常见的工程结构,由许多小的杆件和节点组成。
通过将杆件连接在节点上,形成一个三角形的网格结构。
桁架结构被广泛应用于建筑、桥梁和其他工程领域,具有很好的抗压和抗拉能力,同时也具备较高的刚度和稳定性。
1.桁架结构的基本原理桁架结构的基本原理是通过将杆件连接在节点上,使其形成一个三角形的网格结构。
三角形是一种非常稳定的几何形状,能够承受较大的压力和拉力。
通过多个三角形的组合,可以形成一个稳定的整体结构。
桁架结构的优点之一是其重量轻,但具有较高的强度。
这是因为桁架结构采用了杆件和节点的组合,使力分散到整个结构中,从而减少了单个杆件的受力。
另外,桁架结构还具有较高的刚度和稳定性,能够有效地抵抗外部的振动和变形。
2.桁架结构的应用领域桁架结构被广泛应用于建筑、桥梁和其他工程领域。
在建筑领域,桁架结构常用于大跨度建筑物的屋架设计,如体育馆、展览中心和机场。
桁架结构不仅能够支撑较大的屋盖荷载,还能够提供较大的空间自由度,使建筑内部的空间得到充分利用。
在桥梁领域,桁架结构常用于大跨度桥梁的主梁设计。
桁架结构能够提供较大的横向刚度和纵向稳定性,以适应桥梁的荷载和变形。
同时,桁架结构还能够减少桥梁的自重,提高整体的加固效果。
此外,桁架结构还可以应用于塔架、煤矿井架、水泥工厂、电力塔架等工程领域。
桁架结构在这些领域中能够提供稳定的支撑和强度,同时也能够减少工程材料的使用量,降低工程成本。
3.桁架结构设计的考虑因素在进行桁架结构设计时首先是荷载和受力分析。
需要确定桁架结构所承受的荷载类型和大小,并进行力学分析。
根据力学分析的结果,确定杆件和节点的尺寸和数量,以及连接方式。
其次是材料选择。
桁架结构的材料可以选择钢材、木材、混凝土等。
选择适当的材料需要考虑结构的强度、稳定性和耐腐蚀性等因素。
还需要考虑桁架结构的连接方式。
连接杆件和节点的方式有很多种,如焊接、螺栓连接等。
选择合适的连接方式需要考虑结构的刚度和稳定性,以及施工和维修的便利性。