第二章 结构的基本构件桁架
- 格式:ppt
- 大小:21.08 MB
- 文档页数:102
桁架结构知识点总结归纳桁架结构是一种由多个杆件组成的支撑结构,它具有高强度、刚度和稳定性的特点,常用于建筑、桥梁和其他工程结构中。
桁架结构的设计和施工需要考虑多方面的因素,包括荷载、材料、连接方式等。
在本文中,我们将对桁架结构的基本知识点进行总结归纳,希望能够帮助读者更好地理解和应用桁架结构。
1.桁架结构的基本组成桁架结构由杆件、节点和连接件组成。
杆件是桁架结构的基本构件,它可以是直线型或曲线型的。
节点是杆件的连接点,通过节点将杆件连接在一起,形成桁架结构的整体。
连接件用于连接节点和杆件,常见的连接方式包括焊接、螺栓连接和销钉连接等。
2.桁架结构的类型桁架结构可以根据其构造形式分为平面桁架和空间桁架两种类型。
平面桁架是由一层平面构件组成的桁架结构,而空间桁架由多层平面构件组成的桁架结构。
根据杆件的形状和排列方式,桁架结构还可以分为平行桁架、交叉桁架、空间平行桁架等不同类型。
3.桁架结构的荷载特点桁架结构通常承受静载、动载和温度载荷等多种荷载。
静载是指桁架结构在静止状态下所承受的荷载,包括自重、外加荷载等;动载是指桁架结构在运动状态下所承受的荷载,包括风载、地震载等;温度载荷是指由于温度变化引起的结构变形和内力。
4.桁架结构的受力分析桁架结构的受力分析是设计和施工中的关键环节,它通过计算杆件和节点的内力、变形等参数,确定结构的稳定性和安全性。
在受力分析中需要考虑桁架结构的整体稳定性、节点的刚度和连接件的受力情况等。
5.桁架结构的设计要点桁架结构的设计需要考虑多方面的因素,包括结构的荷载、材料、构造形式等。
在设计中需要合理选择杆件的截面形状和尺寸、节点的连接形式和构造方法、连接件的选型和布局等。
此外,还需要考虑桁架结构的整体稳定性、杆件的疲劳寿命和变形控制等。
6.桁架结构的施工工艺桁架结构的施工包括杆件的加工、节点的装配和连接件的安装等多个环节。
在施工中需严格控制杆件的制作质量、节点的装配精度和连接件的安装工艺。
基本桁架结构分析桁架结构是一种由直线构成的基本结构,它由若干个直线杆件和节点连接而成。
桁架结构广泛应用于航空航天、桥梁、建筑以及其他工程领域,因其轻巧、刚性好、承载能力强而备受青睐。
本文将就基本桁架结构进行分析,探讨其基本原理和应用。
一、基本桁架结构的构成基本桁架结构主要由杆件和节点构成。
杆件可以是刚性杆,也可以是弹性杆。
节点则是将杆件连接在一起的关键部分。
杆件和节点的连接关系直接影响整个桁架结构的刚度和稳定性。
二、基本桁架结构的力学原理基本桁架结构在受力作用下分为拉杆和压杆两种杆件。
拉杆主要受拉力作用,而压杆主要受压力作用。
在实际应用中,桁架结构往往通过连接节点的方式形成稳定的结构。
当外力作用于基本桁架结构时,结构的内力分布会发生变化,从而达到平衡状态。
三、基本桁架结构的应用1. 桥梁结构:基本桁架结构被广泛应用于桥梁建设中。
它的轻巧结构和刚性特点使得桁架桥成为常见的选择。
桁架桥的杆件和节点通过焊接或螺栓连接,能够承受大跨度的荷载并实现结构的稳定。
2. 建筑结构:在一些大跨度建筑物的设计中,基本桁架结构也得到了广泛应用。
桁架结构能够减少建筑物的自重,提供更大的内部空间,并满足建筑物的稳定性要求。
3. 航天航空领域:基本桁架结构在航天航空领域中应用广泛。
航天器或飞机的机身结构常采用桁架结构,这种结构不仅能够满足刚性和轻量化要求,还能够承受复杂的外部荷载。
四、基本桁架结构的优缺点基本桁架结构的优点主要体现在其轻量化、刚性好、承载能力强以及施工方便等方面。
其缺点则在于构造复杂、设计要求高,并且对连接节点和焊接工艺有较高的要求。
五、基本桁架结构的设计方法1. 确定结构载荷:在设计桁架结构之前,需要明确结构所受的荷载类型和作用方向,包括静力荷载、动力荷载等。
2. 选择杆件和节点:根据实际需求和结构要求,选择合适的杆件和节点材料,并确定其形状和尺寸。
3. 分析结构力学特性:通过强度和刚度分析,计算各个杆件和节点的内力分布及变形情况,并进行优化设计。
第2章桁架结构桁架结构又被称为屋架结构,是一种常见的工程结构,由许多小的杆件和节点组成。
通过将杆件连接在节点上,形成一个三角形的网格结构。
桁架结构被广泛应用于建筑、桥梁和其他工程领域,具有很好的抗压和抗拉能力,同时也具备较高的刚度和稳定性。
1.桁架结构的基本原理桁架结构的基本原理是通过将杆件连接在节点上,使其形成一个三角形的网格结构。
三角形是一种非常稳定的几何形状,能够承受较大的压力和拉力。
通过多个三角形的组合,可以形成一个稳定的整体结构。
桁架结构的优点之一是其重量轻,但具有较高的强度。
这是因为桁架结构采用了杆件和节点的组合,使力分散到整个结构中,从而减少了单个杆件的受力。
另外,桁架结构还具有较高的刚度和稳定性,能够有效地抵抗外部的振动和变形。
2.桁架结构的应用领域桁架结构被广泛应用于建筑、桥梁和其他工程领域。
在建筑领域,桁架结构常用于大跨度建筑物的屋架设计,如体育馆、展览中心和机场。
桁架结构不仅能够支撑较大的屋盖荷载,还能够提供较大的空间自由度,使建筑内部的空间得到充分利用。
在桥梁领域,桁架结构常用于大跨度桥梁的主梁设计。
桁架结构能够提供较大的横向刚度和纵向稳定性,以适应桥梁的荷载和变形。
同时,桁架结构还能够减少桥梁的自重,提高整体的加固效果。
此外,桁架结构还可以应用于塔架、煤矿井架、水泥工厂、电力塔架等工程领域。
桁架结构在这些领域中能够提供稳定的支撑和强度,同时也能够减少工程材料的使用量,降低工程成本。
3.桁架结构设计的考虑因素在进行桁架结构设计时首先是荷载和受力分析。
需要确定桁架结构所承受的荷载类型和大小,并进行力学分析。
根据力学分析的结果,确定杆件和节点的尺寸和数量,以及连接方式。
其次是材料选择。
桁架结构的材料可以选择钢材、木材、混凝土等。
选择适当的材料需要考虑结构的强度、稳定性和耐腐蚀性等因素。
还需要考虑桁架结构的连接方式。
连接杆件和节点的方式有很多种,如焊接、螺栓连接等。
选择合适的连接方式需要考虑结构的刚度和稳定性,以及施工和维修的便利性。
桁架结构体系在本小节中我们要给大家介绍桁架结构体系的组成、优缺点及适用范围;桁架结构体系的合理布置原则及及受力特点。
桁架结构组成:一般由竖杆,水平杆和斜杆组成(图1-23)。
图1-23 桁架结构在房屋建筑中,桁架常用来作为屋盖承重结构,这时常称为屋架。
用于屋盖的桁架体系有两类:(1)平面桁架,用于平面屋架;(2)空间桁架,用于空间网架。
这两类桁架的共同特点是它们都由一系列只受同向拉力或压力的杆件连接而成。
作为桁架结构的整体来说,它们在荷载作用下受弯、受剪;但作为桁架结构中的杆件来说,只承受轴向力,不承受弯矩、剪力和扭矩。
桁架结构的最大特点是,把整体受弯转化为局部构件的受压或受拉,从而有效地发挥出材料的潜力并增大结构的跨度。
桁架结构受力合理、计算简单、施工方便、适应性强,对支座没有横向推力,因而在结构工程中得到了广泛的应用。
屋架的主要缺点是结构高度大,侧向刚度小。
结构高度大,增加了屋面及围护墙的用料,同时也增加了采暖、通风、采光等设备的负荷,并给音响控制带来困难。
侧向刚度小,对于钢屋架特别明显,受压的上弦平面外稳定性差,也难以抵抗房屋纵向的侧向力,这就需要设置支撑。
桁架是较大跨度建筑的屋盖中常用的结构型式之一。
在一般情况下,当房屋的跨度大于18m时,屋盖结构采用桁架比梁经济。
屋架按其所采用的材料区分,有钢屋架、木屋架、钢木屋架和钢筋混凝土屋架等。
钢筋混凝土屋架当其下弦采用预应力钢筋时,称为预应力钢筋混凝土屋架。
目前,我国预应力钢筋混凝土屋架的跨度已做到60多米,钢屋架的跨度已做到70多米。
一、桁架结构的型式与受力特点屋架结构的型式很多:(1)按屋架外形的不同,有三角形屋架、梯形屋架、抛物线屋架、折线型屋架、平行弦屋架等。
(2)根据结构受力的特点及材料性能的不同,也可采用桥式屋架、无斜腹杆屋架或刚接桁架、立体桁架等。
我国常用的屋架有三角形、矩形、梯形、拱形和无斜腹杆屋架等多种型式,见图1-24。
图1-24常用的屋架型式(a)三角形屋架(b)平行弦屋架(矩形)(c)梯形屋架(再分式)(d)拱形屋架(e)下撑式屋架(f)无斜腹杆屋架尽管桁架结构中以轴力为主,其构件的受力状态比梁的结构合理,但在桁架结构各杆件单元中,内力的分布是不均匀的。
桁架结构的组成桁架结构是一种广泛应用于建筑和工程领域的结构形式,它具有高强度、轻质、刚性好等特点,因此被广泛应用于桥梁、航空器、高层建筑、体育场馆等领域。
桁架结构的组成是指桁架结构所包含的各个构件,包括主要构件、次要构件和连接件等,下面将对这些构件进行详细介绍。
一、主要构件1.1 上弦杆上弦杆是桁架结构中最重要的构件之一,它位于桁架结构的上部,承受着桁架结构的主要荷载。
上弦杆一般采用钢材、铝合金等材料制成,其截面形状常见的有圆形、矩形、方形等。
在设计上,上弦杆的尺寸和截面形状需要根据桁架结构的荷载、跨度、支座类型等因素进行计算。
1.2 下弦杆下弦杆与上弦杆相对应,位于桁架结构的下部,承受着桁架结构的水平荷载。
下弦杆的材料和截面形状与上弦杆相似,但是其尺寸和截面形状需要根据桁架结构的荷载和跨度等因素进行计算。
1.3 斜杆斜杆是桁架结构中起支撑作用的构件,它连接了上弦杆和下弦杆,承受着桁架结构的剪力和弯矩。
斜杆的材料和截面形状与上弦杆和下弦杆相似,但是其长度和角度需要根据桁架结构的几何形状和荷载进行计算。
1.4 桁架节点桁架节点是桁架结构中连接上弦杆、下弦杆和斜杆的关键构件,它不仅承受着荷载,还需要具备良好的刚度和稳定性。
桁架节点的设计需要考虑到连接件的类型、数量和布局等因素,以保证节点的强度和刚度。
二、次要构件2.1 横向支撑杆横向支撑杆是桁架结构中用于增加刚度和稳定性的次要构件,它连接了斜杆和上弦杆或下弦杆之间,以防止斜杆的屈曲和稳定性问题。
横向支撑杆的数量和位置需要根据桁架结构的设计要求进行确定。
2.2 纵向支撑杆纵向支撑杆是桁架结构中用于增加刚度和稳定性的次要构件,它连接了上弦杆和下弦杆之间,以防止桁架结构的侧向位移和稳定性问题。
纵向支撑杆的数量和位置需要根据桁架结构的设计要求进行确定。
三、连接件3.1 螺栓螺栓是桁架结构中最常用的连接件之一,它连接了桁架结构的各个构件,以保证桁架结构的强度和刚度。