当前位置:文档之家› 导数与函数、方程、不等式综合含参问题处理方法归纳总结学生版

导数与函数、方程、不等式综合含参问题处理方法归纳总结学生版

导数与函数、方程、不等式综合含参问题处理方法归纳总结学生版
导数与函数、方程、不等式综合含参问题处理方法归纳总结学生版

含参问题归纳总结

一、与函数零点(或者方程的根)有关的参数范围问题

函数的零点,即的根,亦即函数的图象与轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题),进而确定参数的取值范围.

题型1.有关()x f 型

1.已知函数f(x)=

e x x

?a ,g(x)=

3(e x ?ax)

e x

,若方程f(x)=g(x)有4个不同的

实数解,则实数a 的取值范围是

A . (?∞,e )

B . (e,3)∪(3,+∞)

C . (?∞,0)∪(e,+∞)

D . (e,+∞)

2.若函数f(x)={e x ,?x ≥0?x 2+2x +1,?x <0 (其中e 是自然对数的底数),且函数y =

|f(x)|?mx 有两个不同的零点,则实数m 的取值范围是( )

A . (0,1)

B . (0,e)

C . (?∞,0)∪(1,+∞)

D . (?∞,0)∪(e,+∞)

3.设函数f (x )是定义在R 上周期为2的函数,且对任意的实数x ,恒f (x )?

f (?x )=0,当x ∈[?1,0]时,f (x )=x 2.若

g (x )=f (x )?log a x 在x ∈(0,+∞)上有且仅有三个零点,则a 的取值范围为( ) A . [3,5] B . [4,6] C . (3,5) D . (4,6)

()f x ()0f x =()f x x x

4.已知函数f(x)={xlnx?2x,x>0

x2+3

2

x,x≤0,若方程f(x)?mx+1=0恰有四个不

同的实数根,则实数m的取值范围是( (

A.(?1,?1

3)B.(?1,?1

2

)C.(?3

4

,?1

2

)D.(?2,?1

2

)

5.设f(x)=lnx+1

x

,若函数y=|f(x)|?ax2恰有3个零点,则实数a的取值范围为()

A.(0,e2

3)B.(e2

3

,e)C.(1

e

,1)D.(0,1

e

)∪{e2

3

}

6.已知函数f(x)={x+1

x?1

,x>1

2?e x,x≤1

,若函数g(x)=f(x)?m(x?1)有两个零点,则实数m的取值范围是

7.若函数f(x)={

2x+2?a,x≤0

x3?ax+2,x>0

有三个不同的零点,则实数a的取值范围

是_____.

8.已知函数f(x)={|lgx|,x>0.

2|x|,x≤0.

若函数y=|2f(x)?a|?1存在5个零点,则

实数a的取值范围为________.

9.已知函数f(x)={

?x2(x≥0),

2x?1(x<0),若函数g(x)=f(x)?b有两个零点,则实

数b的取值范围是___________.

10.已知函数f(x)=x(x?1)

lnx

,偶函数g(x)=kx2+b e x(k≠0)的图像与曲线y= f(x)有且仅有一个公共点,则k的取值范围为_________.

11.函数f(x)满足f(x)=f(?x),f(x)=f(2?x),当x∈[0,1]时, f(x)=x2,过点

P(0,9

4

)且斜率为k的直线与f(x)在区间[0,4]上的图象恰好有3个交点,则k的取值范围为_________.

12.函数g(x)(x∈R)的图象如图所示,关于x的方程[g(x)]2+m?g(x)+2m+ 3=0有三个不同的实数解,则m的取值范围是__________

13.已知f(x)={x 2,x ≤0

?x(e 1?x

+ax 2?a),x >0

是减函数,且y=f(x)+bx 有三个零点,则b 的取值范围为( ( A . (0,

ln22

)∪[e ?1,+∞) B . (0,

ln22

)

C . [e ?1,+∞)

D . {ln22

}∪[e ?1,+∞)

题型2.有关()x f 复合型

14.已知函数f (x )={x 2?1,x <1

lnx

x ,x ≥1 ,关于x 的方程2[f(x)]2+(1?2m)f (x )?m =0,有5个不同的实数解,则m 的取值范围是( )

A . {?1,1

e } B . (0,+∞) C . (0,1

e ) D . (0,1

e ]

15.已知函数f(x)=x e x ,要使函数g(x)=k[f(x)]2?f(x)+1的零点个数最多,则k 的取值范围是

A . k

B . k

C . k >?e 2?e

D . k >?e 2

16.已知函数f(x)={e |x?1|,x >0?x 2?2x +1,x ≤0

,若关于x 的方程f 2(x)?3f(x)+a =

0(a ∈R)有8个不等的实数根,则a 的取值范围是( ) A . (0,1

4) B . (1

3,3) C . (1,2) D . (2,9

4)

题型3.多变量问题

17.设函数f(x)={|x+1|,x≤0,

|log4x|,x>0,若关于x的方程f(x)=a有四个不同的解

x1,x2,x3,x4,且x1

x32x4

的取值范围是

A.(?1,7

2]B.(?1,7

2

)C.(?1,+∞)D.(?∞,7

2

]

18.对于任意的y∈[1,e],关于x的方程x2ye1?x=ay+lny在x∈[?1,4]上有三个根,则实数a的取值范围是

A.[16

e3,3

e

)B.(0,16

e3

]C.[16

e3

,e2?3

e

]D.[16

e3

,e2?1

e

)

二、与函数定义域、值域有关参数范围问题

19.已知函数f(x)=?x 2+2x+4

x

,g(x)=11x?3

x?1?2x

3x

,实数a,b满足a

若?x1∈[a,b],?x2∈[?1,1],使得f(x1)=g(x2)成立,则b?a的最大值为()

A. 3 B. 4 C. 5 D.2√5

20.设m∈R,若函数f(x)=|x3?3x?m|在x∈[0,√3]上的最大值与最小值之差为2,则实数m的取值范围是__________.

21.已知函数f(x)=x2?2ax+a2?1,g(x)=2x?a,?x1∈[?1,1],?x2∈[?1,1],使f(x2)=g(x1),则实数a的取值范围是__________.

22.已知函数f(x)={x2?x+a?, x?≥?a?,

x2+x+3a?,?x

记A={x|f(x)=0},若A∩

(?∞?,?2)≠?,则实数a的取值范围为______.三、与函数切线、单调性、极值有关参数范围问题

23.已知曲线f(x)=?1

3x3+a

2

x2?2x(a>0)与直线y=kx?1

3

相切,且满足

条件的k值有且只有3个,则实数a的取值范围是()

A.[2,+∞) B.(2,+∞) C.[1,+∞) D.(1,+∞)

24.已知函数f(x)=aln(x+1)?x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式f(p+1)?f(q+1)

p?q

>1恒成立,则实数a的取值范围是 ( )

A.[11,+∞) B.[13,+∞) C.[15,+∞) D.[17,+∞)

25.已知函数f(x)=x 2+2(1?a)x +(1?a)2,g(x)=x ?1,若f (x )和g (x )图象有三条公切线,则a 的取值范围是( )

A . a >1+√4

3 B . a <1+√4

3 C . 0

3 D . 1+√4

3

26.已知函数f(x)={

x 2

2e

?,?x ≥a ,?lnx ,?0

.若对任意实数k ,总存在实数x 0,使得

f(x 0)=kx 0成立,求实数a 的取值集合为____.

27.若f(x)=e x ?ae ?x 为奇函数,则满足f(x ?1)>1

e ?e 2的x 的取值范围是( )

A . (?2,+∞)

B . (?1,+∞)

C . (2,+∞)

D . (3,+∞)

28.若函数f(x)=5

2ln(x +1)+1

a(x+1)?ax 在(0,1)上为增函数,则a 的取值范围为( )

A . (?∞,0)∪[1

4,2] B . [?1,0)∪[1

2,1] C . [?1,0)∪(0,1

4] D . (?∞,0)∪[1

2,1]

29.若函数f(x)=52ln(x +1)+1

a(x+1)?ax 在(0,1)上为增函数,则a 的取值范围

为( )

A . (?∞,0)∪[1

4,2] B . (?∞,0)∪[1

2,1] C . [?1,0)∪(0,1

4] D . [?1,0)∪[1

2,1]

30.若函数f(x)=5

2lnx +1

ax ?ax ?1在(1,2)上为增函数,则a 的取值范围为( )

A . (?∞,0)∪[1

4,2] B . (?∞,0)∪[1

2,1] C . [?1,0)∪(0,1

4] D . [?1,0)∪[1

2,1]

31.若函数f(x)={e 2x ?2x +a,x >0ax +3a ?2,x ≤0

在(?∞,+∞)上是单调函数,且f(x)存在

负的零点,则a 的取值范围是( )

A . (2

3,1] B . (23,3

2] C . (0,3

2] D . (2

3,+∞)

32.已知函数f (x )=2e x +1

2ax 2+ax +1有两个极值,则实数a 的取值范围为______.

四、与不等式恒成立问题有关的参数范围问题

含参数的不等式恒成立的处理方法:①的图象永远落在

图象的上方;②构造函数法,一般构造,;

③参变分离法,将不等式等价变形为,或,进而转化为求函数

的最值.

题型1.参变分离

33.已知函数f(x)=alnx ?bx 2,a,b ∈R .若不等式f(x)≥x 对所有的

b ∈(?∞,0],x ∈(e ,e 2]都成立,则a 的取值范围是( ) A . [e,+∞) B . [e 2

2,+∞) C . [e 2

2,e 2) D . [e 2,+∞)

34.已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是

A . [1,+∞)

B . [?1,4)

C . [?1,+∞)

D . [?1,6]

35.不等式(acos 2x ?3)sinx ≥?3对?x ∈R 恒成立,则实数a 的取值范围是________(

36.已知函数f(x)=2x +1?√4?2x 的定义域为D ,当x ∈D 时,f(x)≤m 恒成立,则实数m 的取值范围是__________

()()f x g x >()y f x =()y g x =()()()F x f x g x =-min ()0F x >()a h x >()a h x <()h x

37.已知函数f (x )=xlnx ,g (x )=?x 2+ax ?3,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,则实数a 的取值范围为________.

题型2.数形结合

38.设函数f(x)=e x (2x ?1)?ax +a ,其中,a <1,若存在唯一的整数t ,使得f(t)<0,则a 的取值范围是( (

A . [?3

2e ,1) B . [3

2e ,1) C . [?3

2e ,3

4) D . [3

2e ,3

4)

39.已知函数f(x)={cos (π

2+x),?x ≤0e x

?1, x >0

,若f(x)≥ax ?1恒成立,则实数a 的

取值范围是( )

A . [0,+∞)

B . [0,e]

C . [0,1]

D . [e,+∞)

40.设函数f(x)=lnx +a(x 2?3x +2),若f(x)>0在区间(1?, +∞)上恒成

立,则实数a 的取值范围是( )

A . [0?, 1]

B . [?1?, 0]

C . [0?, 2]

D . [?1?, 1]

41.已知函数f(x)={

a ?e x ,x <1

x +4x ,x ≥1

(e 是自然对数的底).若函数y =f(x)的最小值是4,则实数a 的取值范围为__________.

题型3.构造函数

42.已知函数h(x)=alnx +(a ?1)x 2+1 (a <0) ,在函数h(x)图象上任取两点A,B ,若直线AB 的斜率的绝对值都不小于5,则实数a 的取值范围是( ( A . (?∞,0) B . (?∞,2?3√6

4

] C . (?∞,?

2+3√6

4

] D . (

2?3√6

4

,0)

43.设f ′(x)是奇函数f(x)(x ∈R)的导函数,当x >0时,xlnx ?f ′(x)0成立的x 的取值范围是( ) A . (?2,0)∪(4,+∞) B . (?∞,?4)∪(0,2) C . (?∞,?2)∪(0,4) D . (?∞,?2)∪(4,+∞)

44.设函数f (x )在定义域(0,+∞)上是单调函数,且?x ∈(0,+∞),f [f (x )?e x +x ]=e ,若不等式f (x )+f′(x )≥ax 对x ∈(0,+∞)恒成立,则a 的取值范围是( (

A . (?∞,e ?2]

B . (?∞,e ?1]

C . (?∞,2e ?3]

D . (?∞,2e ?1]

45.设函数f′(x)是奇函数f(x)(x∈R)的导函数,当x>0时,xlnx?f′(x)0成立的x的取值范围是()

A.(?2,0)∪(0,2)B.(?∞,?2)∪(2,+∞)

C.(?2,0)∪(2,+∞)D.(?∞,?2)∪(0,2)

46.已知函数f(x)=e x

x ?ax,x∈(0,+∞),当x2>x1时,不等式f(x1)

x2

?f(x2)

x1

<0

恒成立,则实数a的取值范围为

A.(?∞,e]B.(?∞,e)C.(?∞,e

2)D.(?∞,e

2

]

47.定义在R上的偶函数f(x)的导函数为f′(x),若对任意的实数x,都有2f(x)+ xf′(x)<2恒成立,则使x2f(x)?f(1)

A.{x|x≠±1}B.(?∞,?1)∪(1,+∞)

C.(?1,1)D.(?1,0)∪(0,1)

五、对称点、存在性问题

48.已知函数f(x)=x2+2x?1

2

(x<0)与g(x)=x2+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()

A.(?∞,?√2)B.(?∞,√2)C.(?∞,2√2)D.(?2√2,√2

2

)

49.已知函数f(x)={log a x,x>0

|x+2|,?3≤x≤0(a>0且a≠1),若函数f(x)的图象上有且仅有两个点关于y轴对称,则a的取值范围是()

A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)

50.已知函数f(x)={lnx,x>0

ax2+x,x<0

,其中a>0,若函数y=f(x)的图象上恰好有两对关于y轴对称的点,则实数a的取值范围为____(

51.已知函数f(x)=(m+3)(x+m+1)(x+m),g(x)=2x?2,若对任意x∈R,有f(x)>0 或g(x)>0 成立,则实数m的取值范围是____________

52.已知f(x)=(x+1)3?e?x+1,g(x)=(x+1)2+a,若?x1,x2∈R,使得f(x2)≥g(x1)成立,则实数a的取值范围是__________.

导数应用:含参函数的单调性讨论(二)

导数应用:含参函数的单调性讨论(二) 对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。 一、典型例题 例1、已知函数3 2 ()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性. 分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。而确定函数的增区间就是确定0)('>x f 的解区间;确定函数的减区间就是确定0)('时,/2 ()3(21)f x ax x =++的图像开口向上,36(1)a ?=- I) 当136(1)0,a a ≥?=-≤时,时,/ ()0f x ≥,所以函数()f x 在R 上递增; II) 当0136(1)0,a a <时,时,方程/ ()0f x =的两个根分别为 1211x x a a ---+= =且12,x x < 所以函数()f x 在1(, a --∞,1(,)a -+∞上单调递增, 在11( a a --+上单调递减; (3) 当0a <时,/2 ()3(21)f x ax x =++的图像开口向下,且36(1)0a ?=-> 方程/ ()0f x =的两个根分别为1211,,x x a a --= =且12,x x > 所以函数()f x 在1(, a --∞,1()a -+∞上单调递减, 在11( )a a -+--上单调递增。 综上所述,当0a <时,所以函数()f x 在11( ,a a --上单调递增, 在1(, a -+-∞,1(,)a -+∞上单调递减; 当0a =时,()f x 在1(,]2-∞-上单调递增,在1 [,)2 -+∞上单调递减; 当01a <<时,所以函数()f x 在(-∞,)+∞上单调递增, 在上单调递减; 当1a ≥时,函数()f x 在R 上递增; 小结: 导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述结论。

一次函数与一次方程一次不等式

13.3 一次函数与一次方程、一次不等式 ◆知识概述 1、通过简单的实例发现并了解一次函数、一元一次方程与一元一次不等式之间的联系. 2、通过用函数观点处理方程(组)与不等式问题,体验用函数观点认识问题和处理问题的意义和方法,进一步体验数与形的相互联系的紧密性和相互转化的灵活性. 3、任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值. 4、任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0 (a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 5、一次函数y=kx+b与一元一次方程kx+b=0和一元一次不等式的关系:函数y=kx+b的图象在x轴上方点所对应的自变量x的值,即为不等式kx+b>0的解集;在x轴上所对应的点的自变量的值即为方程kx+b=0的解;在x轴下方所对应的点的自变量的值即为不等式kx+b<0的解集. ◆典型例题 例1、若正比例函数y=(1-2m)x的图象经过点A(x,y)和点B(x,y),当x<x时,y>1211212 >.m< 0C<mO B.m>.mD),则ym的取值范围是( A.2答案:D.例2、一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解读式为____________. 分析: 本题分两种情况讨论:①当k>0时,y随x的增大而增大,则有:当x=-3,y=-5;当x =6中可得b +,把它们代入y=-2y=kx时,=x-y∴∴函 数解读式为4. 1 / 7 ②当k

高中数学含参导数问题

由参数引起的案—— 含参导数问题 一、已知两个函数k x x x f -+=168)(2 ,x x x x g 452)(2 3 ++=,按以下条件求k 的范围。 (1)对于任意的]3,3[-∈x ,都有)()(x g x f ≤成立。 (构造新函数,恒成立问题) (2)若存在成立。,使得)()(]3,3[000x g x f x ≤-∈ (与恒成立问题区别看待) (3)若对于任意的).()(]3,3[2121x g x f x x ≤-∈,都有、 (注意21,x x 可以不是同一个x ) (4)对于任意的)()(],3,3[]3,3[1001x f x g x x =-∈-∈使得,总存在。 (注意:哪个函数的值域含于哪个函数的值域取决于:谁的x 是任意取的,谁的x 是总存在的。) (5)若对于任意0x []3,3∈-,总存在相应的[]12,3,3x x ∈-,使得102()()()g x f x g x ≤≤成立; (与(4)相同) 二、已知函数()2 1ln (1)2 f x a x x a x =+-+, a R ∈ (1)函数f (x )在区间(2,﹢∞)上单调递增,则实数a 的取值范围是 ,

(2)函数f (x )在区间(2,3)上单调,则实数a 的取值范围是 . 三、设函数3()3f x x ax =- (a R ∈),若对于任意的[]1,1-∈x 都有()1f x ≤成立,求实数a 的取值范围. 四、含参数导数问题的三个基本讨论点 一、 求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。 二、 求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根 是否落在定义域内,从而引起讨论。 三、 求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落 在定义域内,但不知这些实根的大小关系,从而引起讨论。 例1、设函数3221 ()23()3 f x x ax a x a a R =-+-+∈.求函数)(x f 的单调区间和极值; (可因式分解,比较两根大小,注意别丢两根相等情况) 解: 2 2 ()4-3()(3)f x x ax a x a x a '=-+=--- ……………………………5分 0a =时,()0f x '≤,(,)-∞∞是函数的单调减区间;无极值;……………6分 0a >时,在区间(,),(3,)a a -∞∞上,()0f x '<; 在区间(,3)a a 上,()0f x '>, 因此(,),(3,)a a -∞∞是函数的单调减区间,(,3)a a 是函数的单调增区间, 函数的极大值是(3)f a a =;函数的极小值是3 4()3 f a a a =- ;………………8分 0a <时,在区间(,3),(,)a a -∞∞上,()0f x '<; 在区间(3,)a a 上,()0f x '>, 因此(,3),(,)a a -∞∞是函数的单调减区间,(3,)a a 是函数的单调增区间 函数的极大值是3 4()3 f a a a =- ,函数的极小值是(3)f a a = ………………10分 例1变式.若2 '()(1)f x x a x a =-++,若(0,)x ∈+∞,讨论()f x 的单调性。(比较根大小,考虑定义域)

导数与函数、方程、不等式综合含参问题处理方法归纳总结学生版

含参问题归纳总结 一、与函数零点(或者方程的根)有关的参数范围问题 函数的零点,即的根,亦即函数的图象与轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题),进而确定参数的取值范围. 题型1.有关()x f 型 1.已知函数f(x)= e x x ?a ,g(x)= 3(e x ?ax) e x ,若方程f(x)=g(x)有4个不同的 实数解,则实数a 的取值范围是 A . (?∞,e ) B . (e,3)∪(3,+∞) C . (?∞,0)∪(e,+∞) D . (e,+∞) 2.若函数f(x)={e x ,?x ≥0?x 2+2x +1,?x <0 (其中e 是自然对数的底数),且函数y = |f(x)|?mx 有两个不同的零点,则实数m 的取值范围是( ) A . (0,1) B . (0,e) C . (?∞,0)∪(1,+∞) D . (?∞,0)∪(e,+∞) 3.设函数f (x )是定义在R 上周期为2的函数,且对任意的实数x ,恒f (x )? f (?x )=0,当x ∈[?1,0]时,f (x )=x 2.若 g (x )=f (x )?log a x 在x ∈(0,+∞)上有且仅有三个零点,则a 的取值范围为( ) A . [3,5] B . [4,6] C . (3,5) D . (4,6) ()f x ()0f x =()f x x x

4.已知函数f(x)={xlnx?2x,x>0 x2+3 2 x,x≤0,若方程f(x)?mx+1=0恰有四个不 同的实数根,则实数m的取值范围是( ( A.(?1,?1 3)B.(?1,?1 2 )C.(?3 4 ,?1 2 )D.(?2,?1 2 ) 5.设f(x)=lnx+1 x ,若函数y=|f(x)|?ax2恰有3个零点,则实数a的取值范围为() A.(0,e2 3)B.(e2 3 ,e)C.(1 e ,1)D.(0,1 e )∪{e2 3 } 6.已知函数f(x)={x+1 x?1 ,x>1 2?e x,x≤1 ,若函数g(x)=f(x)?m(x?1)有两个零点,则实数m的取值范围是 7.若函数f(x)={ 2x+2?a,x≤0 x3?ax+2,x>0 有三个不同的零点,则实数a的取值范围 是_____.

最新中考专题复习-二次函数与方程(组)或不等式

中考专题复习 二次函数与方程(组)或不等式 ◆知识讲解 (1)最大值或最小值的求法 第一步确定a 的符号:a>0有最小值,a<0有最大值;第二步求顶点,?顶点的纵坐标即为对应的最大值或最小值. (2)y 轴与抛物线y=ax 2+bx+c 的交点为(0,c ). (3)与y 轴平行的直线x=h 与抛物线y=ax 2+bx+c 有且只有一个交点(h ,ah 2+bh+c ). (4)抛物线与x 轴的交点. 二次函数y=ax 2+bx+c 的图像与x 轴的两个交点的横坐标x 1,x 2是对应的一元二次方程ax 2+bx+c=0的两个实数根.抛物线与x ?轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点?△>0?抛物线与x 轴相交. ②有一个交点(顶点在x 轴上)?△=0?抛物线与x 轴相切; ③没有交点?△<0?抛物线与x 轴相离. (5)平行于x 轴的直线与抛物线的交点. 同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,?两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2+bx+c=k 的两个实数根. (6)一次函数y=kx+n (k≠0)的图像L 与二次函数y=ax 2+bx+c (a≠0)的图像G 的交点,由方程组2y kx n y ax bx c =+??=++?的解的数目确定:①当方程组有两组不同的解时?L 与G 有两个交点;②方程组只有一组解时?L 与G 只有一个交点;③方程组无解时?L 与G 没有交点. (7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x 轴的交点,?再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分.

方程不等式与一次函数专题(实际应用)

方程、不等式与一次函数专题练习(实际应用) 题型一:方程、不等式的直接应用 典型例题1:(2009,株洲)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知: 在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分.... 每份可得0.2元. (1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份. (2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内. 典型例题2:(2007,福州,10分)李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息: 假设月销售件数为x 件,月总收入为y 元,销售1件奖励a 元,营业员月基本工资 为b 元. (1)求a ,b 的值; (2)若营业员小俐某月总收入不低于1800元,则小俐当月至少要卖服装多少件? 配套练习: 3、(2009,益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元 买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格; (2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运 会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出. 4、(2009,济南)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五 月份的工资情况信息: (1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元? (2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品? 5、(2009,青岛)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=?利润成本 ) 题型二:方案设计 典型例题6、(2009,深圳)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆. (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元? 典型例题7:(2008、湖北咸宁)“5、12”四川汶川大地震的灾情牵动全国人民的心,某市A 、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区。已知A 蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点。从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元。设从地运往处的蔬菜为x 吨。 x 的值; ⑵、设A 、B 两个蔬菜基地的总运费为w 元,写出w 与x 之间的函数关系式,并求总运费最小的调运方案; ⑶、经过抢修,从B 地到C 地的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线的运费不变,试讨论总运费最小的调运方案。

运用导数解决含参问题

运用导数解决含参问题 运用导数解决含参函数问题的策略 以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。 解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、 复杂的问题转化为熟悉、规范甚至模式化、简单的问题。 解决的主要途径:是将含参数不等式的存在性或恒成立问题根据其不等式的结构特 征,恰当地构造函数,等价转化为:含参函数的最值讨论。 一、含参函数中的存在性问题 利用题设条件能沟通所求参数之间的联系,建立方程或不等式(组)求解。这是求存在性范围问题最显然的一个方法。 例题讲解 例1:已知函数x x x f ln 2 1)(2+= ,若存在],1[0e x ∈使不等式 m x f ≤)(0,求实数m 的取值范围 二、含参函数中的恒成立问题 可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,从而使这种具有函数背景的范围问题迎 刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。类型有:(1)双参数

中知道其中一个参数的范围;(2)双参数中的范围均未知。 一、选择题 1 .(2013年课标Ⅱ)已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) A .0x ?∈R,0()0 f x = B.函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0 f x = 2 .(2013年大纲)已知曲线()4 2 1-128=y x ax a a =+++在点,处切线的斜率为,() A .9 B .6 C .-9 D .-6 3 .(2013年湖北)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞ B .1 (0,)2 C .(0,1) D .(0,)+∞ 4.若函数3 2 ()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( )

导数复习专题(含参问题汇总)

高二理数期中专题复习卷----导数专题(二) 【知识点5:含参数的单调性问题】 1.若3 2 ()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值围是( ) A .12a -<< B .2a >或1a <- C .2a ≥或1a ≤- D .12a a ><-或 2.已知函数3 2 ()1f x x ax x =-+--在(),-∞+∞上单调递减,则实数a 的取值围是( ) A.( ),33,?-∞-+∞ ? U B.3,3?- ? C.(),33,-∞-+∞ U D.(3,3 3.若函数2 ()2ln f x x x =-在定义域的一个子区间(1,1)k k -+上不是单调函数,则实数k 的取值围是 . 4.已知函数2 ()ln (2)f x x ax a x =-+-,讨论()f x 的单调性. 5.设函数1 ()(2)ln 2.f x a x ax x =-+ + (1)当0a =时,求()f x 的极值; (2)设1 ()()g x f x x =-在[)1,+∞上单调递增,求a 的取值围; (3)当0a ≠时,求()f x 的单调区间. 【知识点6:含参数的零点个数问题】 1.设a 为实数, 函数3 ()3f x x x a =-++ (1)求()f x 的极值; (2)若方程()0f x =有3个实数根,求a 的取值围; (3)若()0f x =恰有两个实数根,求a 的值. 2.已知函数32 11(),,32 a f x x x ax a x R -= +--∈其中0a >. (1)求函数()f x 的单调区间; (2)若函数()f x 在区间(2,0)-恰有两个零点,求a 的取值围. 3.已知函数()1x a f x x e =-+ (,a R e ∈为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴, 求a 的值. (2)求函数()f x 的极值; (3)当1a =时,,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.

导数应用_含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈?Y Y Y Y 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 例2.讨论x ax x f ln )(+=的单调性

小结: 导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间的符号。一般先讨论0)('=x f 无解情况,再讨论解 0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 围扩 大而出现有根,但根实际上不在定义域的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。 变式练习2. 讨论x ax x f ln 2 1)(2 += 的单调性 小结: 一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。 对于二次型函数(如1)(2 +=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。 例3. 求1)(232--+=x ax x a x f 的单调区间

函数、方程、不等式之间的关系

很多学生在学习中把函数、方程和不等式看作三个独立的知识点。实际上,他们之间的联系非常紧密。如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。 ★函数与方程之间的关系。 先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。这个方程的解也就是原先的函数图像与x 轴交点的横坐标。这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。举例说明如下: 例如函数23y x =-的图像如右所示: 该函数与x 轴的交点坐标为3 (,0)2 ,也就是在函数 解析式23y x =-中,令0y =即可。令0y =也 就意味着将一元一次函数23y x =-变成了一元 一次方程230x -=,其解和一次函数与x 轴的交 点的横坐标是相同的。接下来推广到二次函数: 例如函数2 252y x x =-+的图像如右图所示: 很容易验证,该函数图象与x 轴的交点的横坐标 正是方程2 2520x x -+=的解。 如果右边的函数图象是通过列表、描点、连线 的方式作出来的,虽然比较精确,但过程十分繁琐。 在实际中,很多时候并不要求我们把函数图象作得 很精准。有时候只需要作出大致图像即可。 既然上面讲述了函数图象与对应的方程之间 的关系,我们可不可以通过利用方程的根来绘制 对应的函数图象呢 函数2 252y x x =-+对应的方程是2 2520x x -+=,先求出这个方程的两个解。很容 易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为 1 2 和2。这样,根据函数

导数讨论含参单调性习题(含详细讲解问题详解)

1.设函数. (1)当时,函数与在处的切线互相垂直,求的值; (2)若函数在定义域不单调,求的取值围; (3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由. 2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性; (2)当时,证明:; (3)当时,判断函数零点的个数,并说明理由. 3.已知函数(其中,). (1)当时,若在其定义域为单调函数,求的取值围; (2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数. (1)讨论函数的单调性; (2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数. (1)求的值; (2)若在及所在的取值围上恒成立,求的取值围;

6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><. (1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,数a 的取值围; (2)若21,a e ??∈-∞- ??? ,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值. 7.已知函数()ln x m f x e x +=-. (1)如1x =是函数()f x 的极值点,数m 的值并讨论的单调性()f x ; (2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,数m 的取值围(注:已知常数a 满足ln 1a a =). 8.已知函数()()2 ln 12 x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()3 3 x f x ≤; (2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()12ln ,13x F x e x x f x a x -=++=-+. (1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ?≥≥,数a 的取值围. 10.已知函数()2x f x e ax =+- (1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且 [][]2112()()x f x a x f x a +<+都有成立,求a 的取值围。

函数方程不等式综合应用专题

2011年中考复习二轮材料 函数、方程、不等式综合应用专题 一、专题诠释 函数思想就是用联系和变化的观点看待或提出数学对象之间的数量关系。函数是贯穿在中学数学中的一条主线;函数思想方法主要包括建立函数模型解决问题的意识,函数概念、性质、图象的灵活应用等。函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。也体现了函数图像与方程、不等式的内在联系,在初中阶段,应该深刻认识函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学生学习的基本指导思想,这也是初中阶段数学最为重要的内容之一。而新课程标准中把这个联系提到了十分明朗、鲜明的程度。因此,第二轮中考复习,对这部分内容应予以重视。 这一专题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。 二、解题策略和解法精讲 函数与方程、函数与不等式密不可分,紧密联系。 利用kx+b=0或ax2+bx+c=0可以求函数与x轴的交点坐标问题,利用Δ与0的关系可以判定二次函数与x轴的交点个数等。等式与不等式是两种不同的数量关系,但在一定条件下又是可以转化的,如一元二次方程有实数根,可得不等式Δ≥0等。 一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(-b/a,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;?直线y=ax+b在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解. 一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标。 两条直线的位置关系与二元一次方程组的解: (1)二元一次方程组有唯一的解直线y=k1x+b1不平行于直线y=k2x+b2 k1≠k2.(2)二元一次方程组无解直线y=k1x+b1∥直线y=k2x+b2 k1=k2,b1≠b2. (3)二元一次方程组有无数多个解直线y=k1x+b1与y=k2x+b2重合k1=k2,b1=b2.在复习中,本专题应抓好两个要点:第一个要点是各个内容之间相关概念之间的联系、第二个要点是各个内容之间相关性质之间的联系,以期在综合运用中灵活把握。 三、考点精讲 考点一:函数与方程(组)综合应用 例1.(2010广西梧州)直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b =0的解是x=______ 【分析】∵直线y=2x+b与x轴的交点坐标是(2,0),则x=2时,y=0,∴关于x的方程2x+b=0的解是x=2。

专题__一次函数与方程和不等式典型题

一次函数与方程和不等式典型练习 1、一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( ) A .x =2 B .y =2 C .x =1- D .y =1- 2、一次函数y =ax +b 的图象如图所示,则不等式ax +b >0的解集是( ) A .x <-2 B .x >-2 C .x <1 D .x >1 3、已知一次函数y =ax +b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x -1)-b >0的解集为( ) A .x <-1 B .x >-1 C .x >1 D .x <1 4、如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二 元一次方程组y ax b y kx =+=??? 的解是 . 5、(1)已知关于x 的方程mx +n =0的解是x =-2,那么,直线y =mx +n 与x 轴的交点坐标是 . (2)如图,在平面直角坐标系中,直线AB :y =kx +b 与直线OA :y =mx 相交于点A (-1,-2),则关于x 的不等式kx +b <mx 的解是 .

6、(1)已知方程2x+1=-x+4的解是x=1,那么,直线y=2x+1与直线y=-x+4的交点坐标是__ __ . (2)在平面直角坐标系中,直线y=kx+1关于直线x=1对称的直线l刚好经过点(3,2),则不等式3x>kx+1的解集是__ __ . (3)如图,直线l1、l2交于点A,试求点A的坐标. 8、如图,已知一次函数的图象经过点A(-1,0)、B(0,2). (1)求一次函数的关系式; (2)设线段AB的垂直平分线交x轴于点C,求点C的坐标. 9、如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C,经过点D(1, 0)的直线DE平行于OA,并与直线AB交于点E. (1)求直线AB的解析式; (2)求直线DE的解析式; (3)求△EDC的面积. 10、在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP 为等腰三角形,则符合条件的点P的个数为个. 11、在平面直角坐标系中,点A、B的坐标分别为(2,0)、(2,4),点P在坐标轴上,△ABP是等腰三角形,符合条件的点P共有个.

函数方程不等式之间的关系

? a及函数的图 像图像 与x 轴相 交的 情况 对应 方程 的实 数根 对应不等式的解集 图像上的最 高(低)点单调区间及单调性极(最)值 0 >? > a 与x 轴有 两个 交点 有两 个不 相等 的实 数根 2> + +c bx ax的解集是 ). , ( ) , ( 2 1 +∞ ? -∞ ∈x x x 2< + +c bx ax的解集是). , ( 2 1 x x x∈ 顶点是函数 图像上的最 低点 ) 2 , ( a b x- -∞ ∈时为减 函数,) , 2 (+∞ - ∈ a b x 时为增函数 a b x 2 - =时,函数有极(最) 小值 a b ac 4 42 -0 < a 2> + +c bx ax的解集是 ). , ( 2 1 x x x∈0 2< + +c bx ax的解集是 ). , ( ) , ( 2 1 +∞ ? -∞ ∈x x x 顶点是函数 图像上的最 高点 ) 2 , ( a b x- -∞ ∈时为增 函数,) , 2 (+∞ - ∈ a b x 时为减函数 a b x 2 - =时,函数有极(最) 大值 a b ac 4 42 - 0 =? > a 与x 轴有 一个 交点 有两 个相 等的 实数 根 2> + +c bx ax的解集是 . , 2 1 x x x x≠ ≠ 顶点是函数 图像上的最 低点 ) 2 , ( a b x- -∞ ∈时为减 函数,) , 2 (+∞ - ∈ a b x 时为增函数 a b x 2 - =时,函数有极(最) 小值0

0a 与x 轴没有交点 没有实数根 02>++c bx ax 的解集是 .R x ∈02<++c bx ax 的解集是空集. 顶点是函数图像上的最低点 )2,(a b x - -∞∈时为减函数,) ,2(+∞-∈a b x 时为增函数 a b x 2- =时,函数有极(最)小值a b a c 442 - 0++c bx ax 的解集是空集. 02<++c bx ax 的解集是.R x ∈ 顶点是函数图像上的最高点 )2,(a b x - -∞∈时为增函数,) ,2(+∞-∈a b x 时为减函数 a b x 2- =时,函数有极(最)大值a b a c 442 -

例说导数含参问题的处理策略

例说导数含参问题的处理策略详解 (完美终结篇) 张成 壹叁捌叁捌伍叁捌贰肆贰 一、 和单调性有关的含参问题 1. 求单调区间:本质是解含参不等式 例1:求2 ()()x a f x x -= 的单调区间 【解】2 ()() ()x a a x f x x -+'= 12x a x a ==- 当0a =时,()10f x '=>,故只有增区间:(,0),(0,)-∞+∞不能并哦 当0a >时,由2 ()() ()0x a x x f a x -+'= >即()(x a)0x a -+>得,x a x a <->, 由()(x a)0x a -+<得a x a -<< 当0a <时,由()0f x '>得,x a x a <>- 由()0f x '<得a x a <<- 综上所述:当0a =时函数增区间为(,0),(0,)-∞+∞ 当0a >时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 当0a <时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 例2:求函数f (x )=x 2e ax 的单调区间. 【解】 函数f (x )的导数f ′(x )=2x e ax +ax 2e ax =(2x +ax 2)e ax . 1220x x a ==- (1)当a =0时,由f ′(x )<0得 x <0;由f ′(x )>0,得x >0 所以当a =0时,函数f (x )在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数. 当a ≠0时,1220 x x a ==- (2)当a >0时,由2x +ax 2>0,得x <-2a 或x >0;由2x +ax 2<0,得-2 a <x <0. 所以当a >0时,函数f (x )在(-∞,-2a )和(0,+∞)上为增函数,在区间(-2 a ,0)上为减函数. (3)当a <0时,由2x +ax 2>0,得0<x <-2a ;由2x +ax 2<0,得x <0或x >-2 a , 所以当a <0时,函数f (x )在区间(-∞,0)和(-2a ,+∞)上为减函数,在区间(0,-2 a )上为增函数 总结:两个根大小不定时要讨论 2. 逆向问题:已知函数在某区间上单调性,求参数取值范围 (1) 解析式含参时:本质是恒成立问题: ()0f x '≥(()0f x '≤)恒成立 思路1:转化为求非含参一段函数的最值(范围) 思路2:数形结合 注意事项:端点能否取等号要注意

方程、函数与不等式(含答案)

方程、函数与不等式(含答案)

不等式、方程与函数 1.若不等式组1+x a 2x 40 >?? -≤? 有解,则a 的取值范围是( ) A .a≤3 B .a <3 C .a <2 D .a≤2 2.若关于x 的分式方程2m x 2 1x 3x +-=-无解,则m 的值为( ) A .一l.5 B .1 C .一l.5或 2 D .一0.5或一l.5 3.已知二次函数y=ax 2 +bx+c (a≠0)的图象如图所示,下列说法错误的是( ) A .图象关于直线x=1对称 B .函数ax 2+bx+c (a≠0)的最小值是﹣4 C .﹣1和3是方程ax 2 +bx+c (a≠0)的两个根 D .当x <1时,y 随x 的增大而增大 4.函数y =ax 2 +bx +c 的图象如图所示,那么关于x 的一元二次方程ax 2 +bx +c -3=0的根的情况是( )

A .有两个不相等的实数根 B .有两个异号的实数根 C .有两个相等的实数根 D .没有实数根 5.函数()a y 1x <0x =-的图象如图,那么关于x 的分式方程a 12x -=-的解是( ) A .x=-1 B .x=-2 C .x=-3 D .x=-4 6.如图,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数m y x =的图象的两个交点. (1)求反比例函数和一次函数的函数关系式; (2)求△AOB 的面积; (3)则方程0=-+x m b kx 的解是 ;(请直接写出答案) (4)则不等式0<- +x m b kx 的解集 是 .(请直接写出答案)

导数讨论含参单调性习题(含详细讲解答案解析)

精品 1.设函数. (1)当时,函数与在处的切线互相垂直,求的值; (2)若函数在定义域内不单调,求的取值范围; (3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由. 2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性; (2)当时,证明:; (3)当时,判断函数零点的个数,并说明理由. 3.已知函数(其中,). (1)当时,若在其定义域内为单调函数,求的取值范围; (2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数. (1)讨论函数的单调性; (2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数. (1)求的值; (2)若在及所在的取值范围上恒成立,求的取值范围; 感谢下载载

word 格式整理版 范文范例 学习指导 (3)讨论关于的方程的根的个数. 6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><. (1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,求实数a 的取值范围; (2)若21,a e ??∈-∞- ??? ,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值. 7.已知函数()ln x m f x e x +=-. (1)如1x =是函数()f x 的极值点,求实数m 的值并讨论的单调性()f x ; (2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,求实数m 的取值范围(注:已知常数a 满足ln 1a a =). 8.已知函数()()2 ln 12 x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()3 3 x f x ≤; (2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()12ln ,13x F x e x x f x a x -=++=-+. (1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ?≥≥,求实数a 的取值范围. 10.已知函数()2x f x e ax =+- (1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且 [][]2112()()x f x a x f x a +<+都有成立,求a 的取值范围。

相关主题
文本预览
相关文档 最新文档