2离散数学模拟题
- 格式:doc
- 大小:319.50 KB
- 文档页数:3
一、填空1.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。
2.一个命题公式A(P, Q, R)为真的所有真值指派是000, 001, 010, 100,则其主析取范式是__________________,其主合取范式是_________________。
3.设A={a,b,c},B={b,c,d,e},C={b,c},则( A ⋃ ⊕=____________。
4.幂集P(P(∅)) =________________。
5.设A为任意集合,请填入适当运算符,使式子A________A=∅;A________A’=∅成立。
6.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则D(R)=____________,R(R)=____________。
7.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,S n},其中S i⊆A,S i≠Ø,i=1,2,…,n,且______ _____;进一步若_____ _______,则S是集合A的划分。
8.两个重言式的析取是____ ____式,一个重言式和一个永假式的合取式是式。
9.公式┐(P∨Q) ←→(P∧Q)的主析取范式是。
10. 已知Π={{a}{b,c}}是A={a,b,c}的一个划分,由Π决定的A上的一个等价关系是。
二、证明及求解1.求命题公式(P→Q)→(Q∨P)的主析取范式。
2.推理证明题1)⌝P∨Q,⌝Q∨R,R→S⇒P→S。
2) (∀x)(P(x)→Q(y)∧R(x)),(∃x)P(x)⇒Q(y)∧(∃x)(P(x)∧R(x))x)},S={〈x,y〉|x,y∈A∧(x=y+2)}。
3.设A={0,1,2,3},R={〈x,y〉|x,y∈A∧(y=x+1∨y=2试求R S R。
4.证明:R是传递的⇔R*R⊆R。
5.设R是A上的二元关系,S={<a, b>| 存在c∈A,使<a, c>∈R,且<c, b>∈R}。
离散数学练习题一、选择题1、G是一棵根树,则(A )。
A、G一定是连通的B、G一定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下面哪个语句不是命题(C )。
A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是(C )。
A、0是*的零元B、1是*的幺元C、0是*的幺元D、*没有等幂元4、设G是群,当G有(D )个元素时,不能肯定G是交换群。
A.4B.5C.6D.75、无向完全图K3的不同构的生成子图有( D )个。
A. 6B.5C. 4D. 36、在自然数N上定义的二元运算∙,满足结合律的是( C )。
A.a∙b=a-bB. a∙b=a+2bC. a∙b=max{a,b}D. a∙b=∣a-b∣7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( D )。
A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、由5个结点可构成的根树中,其叉数m最多为( D )。
A.2B.3C.5D. 49、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的?(D )A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D、x*y=LCM(x,y),即x,y的最小公倍数10、仅有一个孤立结点的图称为( B )。
A.零图B.平凡图C.补图D.子图11. 下列各组数中,哪个可以构成无向图的度数列(B )。
A.1,1,1,2,2B.2,2,2,2,3C.1,2,2,4,6D.2,3,3,312. *是定义在Z上的二元运算,y*=∈+,,则*的幺元和零元分别是(D )。
∀,xyyxxZyx-A.不存在,0B.0,1C.1,不存在D.不存在,不存在 13. 设N N N f ,:→为自然数,且⎪⎩⎪⎨⎧=为偶数若为奇数若x xx x f 21)(则})0({)0(f f 和分别是(B )。
北京语言大学网络教育学院《离散数学》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。
[A] 3[B] 8[C]9[D]272、设{}{}1,2,3,5,8,1,2,5,7A B A B ==-=,则( )。
[A] 3,8 [B]{}3 [C]{}8 [D]{}3,83、若X 是Y 的子集,则一定有( )。
[A]X 不属于Y [B]X ∈Y [C]X 真包含于 Y [D]X∩Y=X4、下列关系中是等价关系的是( )。
[A]不等关系 [B]空关系 [C]全关系 [D]偏序关系5、对于一个从集合A 到集合B 的映射,下列表述中错误的是( )。
[A]对A 的每个元素都要有象 [B] 对A 的每个元素都只有一个象 [C]对B 的每个元素都有原象 [D] 对B 的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。
[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A 到A 的双射共有( )。
[A]3个 [B]6个 [C]8个 [D]9个8、一个连通图G具有以下何种条件时,能一笔画出:即从某结点出发,经过图中每边仅一次回到该结点()。
[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点[D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是()。
《离散数学》模拟题(补)一.单项选择题1.下面四组数能构成无向图的度数列的有( )。
A、 2,3,4,5,6,7;B、 1,2,2,3,4;C、 2,1,1,1,2;D、 3,3,5,6,0。
2.图的邻接矩阵为( )。
A、;B、;C、;D、。
3.设S1={1,2,…,8,9},S2={2,4,6,8},S3={1,3,5,7,9},S4={3,4,5},S5={3,5},在条件下X与()集合相等。
A、X=S2或S5 ;B、X=S4或S5;C、X=S1,S2或S4;D、X与S1,…,S5中任何集合都不等。
4.下列图中是欧拉图的有( )。
5.下述命题公式中,是重言式的为()。
A、;B、;C、;D、。
6.的主析取范式中含极小项的个数为()。
A 、2; B、 3; C、5; D、0⎪⎪⎪⎪⎪⎭⎫⎝⎛1111111⎪⎪⎪⎪⎪⎭⎫⎝⎛1111111111111111⎪⎪⎪⎪⎪⎭⎫⎝⎛1111111⎪⎪⎪⎪⎪⎭⎫⎝⎛111111131SXSX⊄⊆且)()(qpqp∨→∧))())(()(pqqpqp→∧→↔↔qqp∧→⌝)(qpp↔⌝∧)(rqpwff→∧⌝)(7.给定推理① P ② US ① ③ P ④ ES ③ ⑤ T ②④I ⑥ UG ⑤推理过程中错在( )。
A 、①->②;B 、②->③;C 、③->④;D 、④->⑤8.设S 1={1,2,…,8,9},S 2={2,4,6,8},S 3={1,3,5,7,9},S 4={3,4,5}, S 5={3,5},在条件下X 与( )集合相等。
A 、X=S 2或S 5 ;B 、X=S 4或S 5;C 、X=S 1,S 2或S 4;D 、X 与S 1,…,S 5中任何集合都不等。
9.设R 和S 是P 上的关系,P 是所有人的集合,,则表示关系 ( )。
A 、;B 、;C 、 ;D 、。
10.下面函数( )是单射而非满射。
A 、; B 、;C 、;D 、。
《离散数学》模拟题北航10秋学期《离散数学》模拟题⼀⼀、单项选择题(本⼤题共15⼩题,每⼩题2分,共30分)1.∑中所有有限长度的串形成的集合记为∑* ,容易证得∑*上的连接运算不满⾜交换律,但满⾜( A ) A .结合律 B .分配律 C .幂等律 D .吸收律 2.Klein 群中元素a,b,c 的阶为( B )。
A .1B .2C .3D .4 3.群G 的元素x 的所有幂的集合为G 的⼦群,称由x ⽣成的⼦群。
记为( A ). A . B .(x) C .x D .[x] 4.交换环是指乘法满⾜( A )。
A .交换律B .结合律C .分配律D .吸收律 5.⾄少有( B )元素的含单位元、⽆零因⼦环称为除环。
A .⼀ B .⼆ C .三 D .四 6.∨,∧满⾜( C )的格称为分配格A .交换律B .结合律C .分配律D .幂等律 7.若L 为有限布尔代数,则( B )正整数n ,L 与含有n 个元素的集合A 的幂集同构。
A .不存在 B .存在 C .有可能存在 8.有向图D 的顶点v 作为边的始点的次数之和称为v 的出度,记为d +(v), v 作为边的终点的次数之和称为v 的⼊度,记为d -(v),v 的度数d(v)= ( A )。
A .d +(v)+d -(v)B .d +(v)C .d -(v)D .d +(v)*d -(v) 9.若通路Г=v 0e 1v 1e 2…e 1v 1 中所有顶点互不相同(所有边⾃然互不相同)时称为( B ) A .初级回路 B .路径 C .复杂通路D .迹 10.在n 阶图中,若⼀顶点存在到⾃⾝的回路,则必存在从该顶点到⾃⾝的长度不超过( B )的回路。
A .n-1 B .n C .n+1 D .2n 11.“⼈总是要死的”谓词公式表⽰为( C )。
(论域为全总个体域)M(x):x 是⼈;Mortal(x):x 是要死的。
A .)()(x Mortal x M →; B .)()(x Mortal x M ∧C .))()((x Mortal x M x →?; D .))()((x Mortal x M x ∧?12. 公式))()((x Q x P x A →?=的解释I 为:个体域D={2},P(x):x>3, Q(x):x=4则A 的真值为( A )。
《离散数学》模拟试卷二答案一、【单项选择题】(本大题共15小题,每小题3分,共45分)二、【判断题】(本大题共8小题,每小题3分,共24分)三、【解答题】(本大题共3小题,24、25每小题10分,26小题11分,共31分)24、一次学术会议的理事会共有20个人参加,他们之间有的相互认识但有的相互不认识。
但对任意两个人,他们各自认识的人的数目之和不小于20。
问能否把这20个人排在圆桌旁,使得任意一个人认识其旁边的两个人?根据是什么?标准答案:解:可以把这20个人排在圆桌旁,使得任一人认识其旁边的两个人。
根据:构造无向简单图G=<V,E>,其中V={v1,v2,…,V20}是以20个人为顶点的集合,E中的边是若任两个人v i和v j相互认识则在v i与v j之间连一条边。
∀Vi∈V,d(v i)是与v i相互认识的人的数目,由题意知∀vi,v j∈V有d(v i)+d(v j)≥20,于是G中存在汉密尔顿回路。
设C=V i1V i2…V i20V i1是G中一条汉密尔顿回路,按这条回路的顺序按其排座位即符合要求。
复习范围或考核目标:考察无向图中的哈密尔顿图的应用,见课本211页。
25、图G=<V, E>,其中V={a, b, c, d, e, f },E={(a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (d, e), (d, f), (e, f)},对应边的权值依次为5,2,1,2,6,1,9,3及8.(1)画出G的图形;(2)写出G 的邻接矩阵。
标准答案:解:(1)因为V ={a , b , c , d , e , f } E ={(a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (d , e ), (d , f ), (e , f )}, 权值依次为5,2,1,2,6,1,9,3及8 所以,G 的图形如右图所示:(2)分析:定义3.3.1 设G =<V ,E >是一个简单图,其中V ={v 1,v 2,…,v n },则n 阶方阵A (G )=(a ij )称为G 的邻接矩阵,其中⎪⎩⎪⎨⎧==.1j i v v v v a j i j i ij 不相邻或与相邻与邻接矩阵:复习范围或考核目标:考察图的矩阵表示,见课本187页。
离散数学模拟试题2一、单选题(本大题共8小题,每小题2分,共16分)1.设p:天下大雨,q:我们乘公共汽车。
命题“除非天下大雨,否则我们不乘公共汽车。
”符号化为()A. p→qB. q→pC. p∧qD.⌝q →⌝ p 2.设F(x):x是兔子,G(y):y是乌龟,H(x,y):x比y跑得快。
命题“有的兔子比所有的乌龟跑得快”符号化为()A.∀x(F(x)→∃y(G(y)∧H(x,y)))B.∀x∃y((F(x)∧G(y))→H(x,y))C.∀x∃y(F(x)→(G(y)→H(x,y)))D. ∃x(F(x)∧∀y(G(y)→H(x,y))) 3.设集合A={∅,a},下面四个命题为真的是()A. a⊆AB.∅⊆AC.{∅}∈ AD.{a}∈ A 4.设集合A={a,b,c,d},A上的关系R={〈a,b〉,〈b,a〉, 〈c,d〉,〈d,c〉}∪I A,则下面命题为真的是()A. R是A上的等价关系B. R是A上的偏序关系C. R是A上的全序关系D. R是A上的全域关系5.设V=〈N,+〉,其中N为自然数集合,+为数的普通加法。
令φ:N→N,φ(x)=2x。
下面四个命题为真的是()A.是满同态B.是单自同态C.是自同构D.是V到自身的映射,但A,B,C都不是6.设Z是整数集合,∩是Z的幂集P(Z)上的交运算。
令V=〈P(Z);∩〉,则V是()A.循环群 B. 有限群 C. 无限群 D. 含幺半群7.设G是有n个顶点m条边的无向简单图,并且m=n-1,则有结论()A. G一定是树 B. G不一定是树 C.G一定不是树 D.G是森林8.完全图K4是()A. 欧拉图B.二部图C.平面图D.非平面图二、填空题(本大题共8小题,每小题3分,共24分)1.含n个命题变项的矛盾式的主析取范式为。
2.设个体域为自然数集合N,命题∀x∃y(x+y=1)的真值为。
3.设A={a,b},IA 是A上的恒等关系,则商集A/IA= 。
离散数学单元训练模拟题编者:金鹏时间:2008-5-6目录离散数学模拟题一 (3)离散数学模拟题二 (8)离散数学模拟题三 (15)离散数学模拟题四 (20)离散数学模拟题五 (27)离散数学模拟题六 (32)离散数学模拟题七 (36)离散数学模拟题八 (42)离散数学模拟题九 (45)离散数学模拟题十 (49)离散数学模拟题十一 (52)离散数学模拟题十二 (59)离散数学模拟题十三 (62)离散数学模拟题十四 (67)离散数学模拟题十五 (74)离散数学模拟题十六 (78)离散数学模拟题十七 (90)离散数学模拟题一一、判断题(共 12 分,每小题 1 分)( ) 1、(ØpÚØq)®(p®Øq)不是重言式。
( )2、在命题逻辑中,任何命题公式的主合取范式都是存在的,并且是唯一的。
( ) 3、命题函数是命题。
( ) 4、设 A,B,C 是 Q的子集,则有 A´(BÅC)¹(A´B)Å(A´C)。
( )5、设 A、B为集合,若 B≠Φ,则 A-B包含于 A。
( ) 6、若 R 为集合 A 上的非对称关系,则R 2 亦然。
( )7、存在一种建立在某个集合上的关系,它可以是对称的、反对称的、自反的、反 自反和可传递的。
( )8、设〈G,*〉是群,对于 G 中的任意元素 a,b 有:(a× b)-1=b-1× a-1。
( )9、在一个代数系统中,某个元素有多个左逆元,就不可能有右逆元。
( )10、设是非连通平面图 G的对偶图中的顶点数,边数和面数,则它们之间不满足欧 拉公式;( )11、设无向图 G 具有割点,则G 中一定不存在汉密尔顿回路;( )12、有向图G 是单侧连通;(G)二、求出下列命题公式的主析取范式和主合取范式。
(10 分)(P®(QÙR))Ù(ØP®(ØQÙR))三、逻辑推证(10 分)(1)Ø(P®Q)®Ø (RÚS),((Q®P)ÚØR) ,Ø(R®P)Þ P®Q四、用谓词推理理论来论证下述推证(10 分)任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑自行车(可 能这两种都喜欢)。
《离散数学》期末考试考点及模拟题答案一、考试题型及分值各种题型所占的比例:填空题10%,判断题10%,选择题20%,其它题型60%新出试卷按照如下各种题型所占的比例:填空题20%,判断题15%,选择题30%,其它题型35%二、考点1.命题逻辑熟练掌握命题及其表示;掌握常用联结词(「、八、V、f、)的使用;熟练掌握命题公式的符号化;熟练掌握使用真值表判别命题等价的方法;掌握使用等价公式判别命题等价的方法;掌握重言式与蕴含式的概念及其判别方法;了解其他联结词的使用;了解对偶的概念;掌握求命题范式的方法;熟练掌握命题演算推理的基本理论.2.谓词逻辑熟练掌握谓词的概念及其表示;熟练掌握量词的使用;掌握使用谓词公式翻译命题的方法;掌握变元的约束;掌握谓词演算中等价式与蕴含式的判别;了解前束范式的求法;熟练掌握谓词演算推理的基本理论.3.集合与关系熟练掌握集合的概念和表示法;掌握集合的基本运算;掌握序偶与笛卡尔积的概念;熟练掌握关系及其表示;掌握关系的基本性质;了解复合关系和逆关系的概念;掌握关系的闭包运算;了解集合的划分和覆盖;掌握等价关系与等价类的概念;了解相容关系的概念;掌握各种序关系的概念.4.函数熟练掌握函数的概念;掌握逆函数和复合函数的概念;了解基数的概念;了解可数集与不可数集;了解基数的比较.5.代数结构掌握代数系统的概念;掌握n元运算及其性质;掌握半群、群与子群的概念;了解阿贝尔群和循环群的概念;了解陪集与拉格朗日定理;了解同构与同态的概念;了解环与域的概念.6.图论掌握图的基本概念;掌握路与回路的概念;熟练掌握图的矩阵表示;掌握欧拉图和哈密顿图的概念;掌握平面图的概念;了解对偶图与着色;熟练掌握树与生成树的概念;了解根树及其应用.(一)参考教材与网上资料复习(二)随堂练习或作业题在在新出试卷里有较大比例提高三、模拟试卷附后(请参考学习资料,找到或者做出解答)一、考试对象计算机学科中计算机科学与技术、软件工程等专业本科生二、考试的性质、目的离散数学是随着计算机科学的发展而逐渐形成的一门学科,是近代数学的一个分支在计算机科学中,它主要应用于数据结构、操作系统、编译原理、数据库理论、形式语言与自动机、程序理论、编码理论、人工智能、数字系统逻辑设计等方面它是计算机科学各专业重要的专业基础课.本课程教学的目标是:①使学生掌握离散数学的基本理论和基本知识,为学习有关课程以及今后工作打好基础.②培养和提高学生的抽象思维与逻辑推理能力.四、考试方式及时间:考试方式:闭卷考试时间:120分钟五、课程综合评定办法1期末闭卷考试:占总成绩60%.2、平时成绩(作业、考勤情况等):占总成绩40%3、试题难易程度:基础试题:中等难度试题:较难试题:难度较大的试题 =4: 3: 2: 1六、考试教材《离散数学》左孝凌、李为^、刘永才编著,上海科学技术文献出版社附:模拟试卷华南理工大学网络教育学院2012 - 2013学年度第一学期期末考试《离散数学》试卷(模拟卷)教学中心:专业层次:学号:姓名:座号:注意事项:1.本试卷共五大题,满分100分,考试时间120分钟,闭卷;2.考前请将以上各项信息填写清楚;3.所有答案直接做在试卷上,做在草稿纸上无效;4.考试结束,试卷、草稿纸一并交回.一.判断题(每题2分,共10分)1、设A, B都是合式公式,则A A B F「B也是合式公式.(J)2. P f Q o「P v Q ,(v)3、对谓词公式(V x) (P (y) V Q (x,y)) △R (x,y)中的自由变元进行代入后得到公lllllll !lllll式(V x) (P (z) V Q (x,z)) △R (x,y) . (x)4.对任意集合 A、B、C,有(A—B) —C = (A—C) - (B—C). (j)5. 一个结点到另一个结点可达或相互可达. (X )二.单项选择题(每题2分,共20分)1.设:。
一、填空
1、 设p :天气热,q :他去游泳,则命题“如果天气热,则
他就去游泳”可符号化为
2、 设A={2,3,4,5,6}上的二元关系
}|,{是质数x y x y x R ∨<><=,则R= (列举法)。
R 的关系矩阵M R = 。
3、设A={1,2,3},则A 上既是对称的又是反对称的关系R= 。
4、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是
5、 设A 为任意的命题公式,B 为重言式,则B A ∨的类型为 ;
二、选择
1、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为
则R 具有( )性质。
A .自反性、对称性、传递性;
B .反自反性、
反对称性;
C .反自反性、反对称性、传递性;
D .自反性 。
2、在如下各图中( )欧拉图。
3. 设{}1,2,3A =,则A 上的二元关系有几个?( )
A. 32 .
B. 23 .
C. 332⨯ .
D. 323⨯.
4.下列哪个命题是真命题?( )
A .我正在说谎. B. 若011=+,则雪是黑色的. C. 9518+>.
D.存在最大的质数.
5. 下面四组数能构成无向简单图的度数列的有( )。
A 、(2,2,2,2,2);
B 、(1,1,2,2,3);
C 、(1,1,2,2,2);
D 、(0,1,3,3,3)。
三、计算
1、权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树。
2. 利用主析取范式,求公式R Q Q P ∧∧→⌝)(的类型。
3. 设A={1,2},A 上所有函数的集合记为A A ,试给出A A
四、证明
1. 若无向图G 为欧拉图,证明G 中无桥.
2. 在自然推理系统p 中构造证明. 前提:(),,p q r r s s p ∧→→⌝∧ 结论:q ⌝。