最新高考-高考一轮复习之独立事件同时发生的概率 精品
- 格式:doc
- 大小:64.21 KB
- 文档页数:5
高考一轮复习相互独立事件同时发生的概率练习题相互独立事件同时发生的概率一、基本知识点复习1.积事件的含义及其表示:1.相互独立事件的定义:3.相互独立事件同时发生的概率公式:4.独立重复试验的含义,5. n 次独立重复试验中,某事件恰好发生k 次的概率公式:二、复习练习题(一)选择题1.甲、乙两人进行围棋比赛,比赛采用5局3胜制,若有一方先胜3局则比赛结束,假定甲每局比赛获胜的概率均为32,则甲以3:1获胜的概率为()A.278 B.8132 C.94 D. 982.三人独立的破译一份密码,他们能单独译出的概率分别为41,31,51,假设他们破译密码是彼此独立的,则此密码被破译的概率是()A.52B.32C.53D. 433.某人射击一次,击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为()A.12581B.12554C.12536D. 125274.若事件E 和F 相互独立,且41)()(F P E P ,则)(F E P 的值为()A.0 B.161 C.41 D. 215.在4次独立重复试验中,随机事件A 恰好发生1次概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是()A.1,4.0B.6.0,0C.4.0,0D. 1,6.06.从甲袋中摸出一个红球的概率是31,从乙袋中摸出一个红球的概率是21,现从两袋中各摸出一个球,则32等于()A .两个球不都是红球的概率;B.两个球都是红球的概率;C .两个球中至少有一个红球的概率;D.两球中恰有一个红球的概率.7.某校A 班有学生40名,其中男生24名.B 班有学生50名,其中女生30名.现从A,B 班各找一名学生进行问卷调查,则找出的学生是一男一女的概率是()A.2512 B.2513 C.2516 D. 2598.甲、乙、丙三人用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲答及格的概率为108,乙答及格的概率为106,丙答及格的概率为107.三人各答一次,则三人中只有一人答及格的概率为()A.203B.12542C.25047 D. 以上全不对9.袋子里有5个黑球,4个白球.每次随机取出一球,若取得黑球,则放入袋中,重新取球;若取得白球则停止取球.那么在第四次取球之后停止的概率为()A.451435C C C B.94)95(3 C.4153 D. 14C 94)95(310.一个电路上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,且这两根熔丝熔断与否相互独立.则其中至少有一根熔断的概率为()A.039.026.015.0B.961.026.015.01C.629.074.085.0 D. 371.074.085.01二、填空题11.某类电脑无故障运行10000小时的概率是0.2,则3台此类电脑在运行10000小时以上最多只有1台出故障的概率为12.有一批书共100本,其中文科书40本,理科书60本,按装潢可分为精装、平装两种,精装书70本,某人从这100本书中任取一本,恰是文科书,放回后再任取一本,恰是精装书,这一事件的概率是13.地震发生后拯救被埋人员就是同时间赛跑,下表给出了救援时间与被埋者存活率的关系震后救援时间30分钟18小时3天5天存活率99﹪80﹪30﹪7﹪四川·汶川大地震后全国人民齐心协力展开救援工作,震后18小时救援人员探测到某废墟下有5名被困者,这5人中至少有4人存活的概率为,若震后3天才发现被困者,则至少有4人存活的概率为14.一道数学竞赛题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题,恰有一人解出的概率是15.某射手射击一次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第三次击中目标的概率是0.9;②他恰好击中目标3次的概率是1.09.03 ;③他至少击中目标一次的概率的概率是41.01;其中,正确结论的序号是三、解答题16.设一射手平均每射击10次中靶4次,求在5次射击中(1)恰好击中1次的概率;(2)第二次击中的概率;(3)恰好击中2次的概率;(4)第二、三两次击中的概率;(5)至少击中1次的概率.17.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局比赛中加获胜的概率是0.6,乙获胜的概率是0.4,各局比赛的结果相互独立,已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛的胜利的概率.18.某单位为绿化环境,移栽了甲、乙两种大树各2株,设甲、乙两种大树的存活率分别为5465和,且各株大树是否存活互不影响.求移栽的4株大树中(1)至少有一株存活的概率;(2)两种大树各存活一株的概率.19.一家3口都会下棋,互有输赢,但父亲的棋艺最高.一天,儿子想要父亲给钱去买一套奥数教程.父亲说:“你得与我们下3盘棋,我和你母亲轮流与你下.”儿子问:“是先和您下,还是先和妈妈下?”父亲说:“这可以由你选择.”请问儿子应当如何选择?20.甲、乙两人各射击一次,击中目标的概率分别是4332和,假设两人是否击中目标相互之间没有影响.(1)就甲射击4次,至少有一次击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后被终止射击的概率是多少?21. 甲、乙、丙三人在同一办公室工作,办公室里只有一部电话机,设经该机打进的电话是打给甲、乙、丙的概率依次为61、31、21,若在一段时间内打进三个电话,且各个电话相互独立,求:(1)这三个电话是打给同一个人的概率;(2)这三个电话恰有两个是打给甲的概率.。
11.3 相互独立事件同时发生的概率●知识梳理1.相互独立事件:事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫相互独立事件.2.独立重复实验:如果在一次试验中某事件发生的概率为p ,那么在n 次独立重复试验中,这个事件恰好发生k次的概率为P n (k )=C k n p k (1-p )n -k. 3.关于相互独立事件也要抓住以下特征加以理解:第一,相互独立也是研究两个事件的关系;第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的. 4.互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.5.事件A 与B 的积记作A ·B ,A ·B 表示这样一个事件,即A 与B 同时发生.当A 和B 是相互独立事件时,事件A ·B 满足乘法公式P (A ·B )=P (A )·P (B ),还要弄清A ·B ,B A ⋅的区别. A ·B 表示事件A 与B 同时发生,因此它们的对立事件A 与B 同时不发生,也等价于A 与B 至少有一个发生的对立事件即B A +,因此有A ·B ≠B A ⋅,但A ·B =B A +.●点击双基1.(2004年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是A.p 1p 2B.p 1(1-p 2)+p 2(1-p 1)C.1-p 1p 2D.1-(1-p 1)(1-p 2) 解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1). 答案:B2.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为 A.0 B.1 C.2 D.3解析:由C k 5(21)k (21)5-k =C 15+k (21)k +1·(21)5-k -1, 即C k 5=C 15+k ,k +(k +1)=5,k =2.答案:C3.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响) A.94B.901 C.54 D.95 解析:P =31×61×451=901.答案:C4.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为________.解析:P =21×32×43+ 21×31×43+ 21×32×41=2411. 答案:2411 5.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________.解析:因为这位司机在第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P =(1-31)(1-31)×31=274. 答案:274 ●典例剖析【例1】 (2004年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B ,于是P (A )=106= 53,P (A )=52; P (B )=104= 52,P (B )=53. 由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A ·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P (B )=53·52=256. 答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件A ·B 发生)的概率为P (A ·B )=P (A )·P (B )=52·53=256. ∴两人中至少有1人抽到足球票的概率为 P =1-P (A ·B )=1-256=2519. 答:两人中至少有1人抽到足球票的概率是2519. 【例2】 有外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P (A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P (D )=108=54. 显然,事件A ·C 与事件B ·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P =P (A ·C +B ·D )=P (A ·C )+P (B ·D )=P (A )·P (C )+P (B )·P (D )=10059. ∴本次试验成功的概率为10059. 【例3】 (2004年福州模拟题)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.(1)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;(2)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率. 解:(1)由题意知,甲种已饮用5瓶,乙种已饮用2瓶. 记“饮用一次,饮用的是甲种饮料”为事件A ,则p =P (A )=21. 题(1)即求7次独立重复试验中事件A 发生5次的概率为P 7(5)=C 57p 5(1-p )2=C 27(21)7=12821. (2)有且仅有3种情形满足要求:甲被饮用5瓶,乙被饮用1瓶;甲被饮用5瓶,乙没有被饮用;甲被饮用4瓶,乙没有被饮用.所求概率为P 6(5)+P 5(5)+P 4(4)=C 65p 5(1-p )+C 55p 5+C 44p 4=163. 答:甲饮料饮用完毕而乙饮料还剩3瓶的概率为12821,甲饮料被饮用瓶数比乙饮料被饮用瓶数至少多4瓶的概率为163. ●闯关训练 夯实基础1.若A 与B 相互独立,则下面不相互独立事件有 A.A 与AB.A 与BC. A 与BD. A 与B解析:由定义知,易选A. 答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是A.0.12B.0.88C.0.28D.0.42 解析:P =(1-0.3)(1-0.4)=0.42. 答案:D3.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.解析:该生被选中,他解对5题或4题.∴P =(53)5+C 45×(53)4×(1-53)=31251053. 答案:312510534.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一种报纸的概率为________. 解析:P =1-(1-0.6)(1-0.3)=0.72. 答案:0.72 培养能力5.在未来3天中,某气象台预报每天天气的准确率为0.8,则在未来3天中, (1)至少有2天预报准确的概率是多少?(2)至少有一个连续2天预报都准确的概率是多少? 解:(1)至少有2天预报准确的概率即为恰有2天和恰有3天预报准确的概率,即C 23·0.82·0.2+C 33·0.83=0.896.∴至少有2天预报准确的概率为0.896.(2)至少有一个连续2天预报准确,即为恰有一个连续2天预报准确或3天预报准确的概率为 2·0.82·0.2+0.83=0.768.∴至少有一个连续2天预报准确的概率为0.768.6.(2004年南京模拟题)一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率; (2)能进行通讯的概率.解:记“第一套通讯设备能正常工作”为事件A ,“第二套通讯设备能正常工作”为事件B . 由题意知P (A )=p 3,P (B )=p 3,P (A )=1-p 3,P (B )=1-p 3.(1)恰有一套设备能正常工作的概率为P (A ·B + A ·B )=P (A ·B )+P (A ·B ) =p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为 P (A ·B )=P (A )·P (B )=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为 P (A ·B + A ·B )+P (A ·B )=2p 3-2p 6+p 6=2p 3-p 6. 方法二:两套设备都不能正常工作的概率为 P (A ·B )=P (A )·P (B )=(1-p 3)2. 至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P (A ·B )=1-P (A )·P (B )=1-(1-p 3)2=2p 3-p 6.答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6.7.已知甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球.现从两袋中各取两个球,试求取得的4个球中有3个白球和1个黑球的概率.解:从甲袋中取2个白球,从乙袋中取1个黑球和1个白球的概率为2723C C ×291415C C C =635; 从甲袋中取1个黑球和1个白球,从乙袋中取2个白球的概率为271413C C C ×2925C C =6310. 所以,取得的4个球中有3个白球和1个黑球的概率为635+6310=6315=215. 探究创新8.(2004年湖南)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件,由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅,92)(,121)(,41)(C A P C B P B A P即⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅.92)()(,121)](1[)(,41)](1[)(C P A P C P B P B P A P由①③得P (B )=1-89P (C ), 代入②得27[P (C )]2-51P (C )+22=0. 解得P (C )=32或911(舍去). 将P (C )=32分别代入③②可得P (A )=31,P (B )=41, 即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是31,41,32.(2)记D 为从甲、乙、丙加工的零件中各取一个检验至少有一个一等品的事件,则 P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-32·43·31=65. 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为65. ●思悟小结1.应用公式时,要注意前提条件,只有对于相互独立事件A 与B 来说,才能运用公式P (A ·B )=P (A )·P (B ).2.在学习过程中,要善于将较复杂的事件分解为互斥事件的和及独立事件的积,或其对立事件.3.善于将具体问题化为某事件在n 次独立重复试验中发生k 次的概率. ●教师下载中心 教学点睛1.首先要搞清事件间的关系(是否彼此互斥、是否互相独立、是否对立),当且仅当事件A 和事件B 互相独立时,才有P (A ·B )=P (A )·P (B ).2.A 、B 中至少有一个发生:A +B .(1)若A 、B 互斥:P (A +B )=P (A )+P (B ),否则不成立. (2)若A 、B 相互独立(不互斥).法一:P (A +B )=P (A ·B )+P (A ·B )+P (A ·B ); 法二:P (A +B )=1-P (A ·B );法三:P (A +B )=P (A )+P (B )-P (AB ).3.某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高正确率.要注意“至多”① ② ③“至少”等题型的转化,如例1.4.n 次独立重复试验中某事件发生k 次的概率P n (k )=C k n p k (1-p )n -k正好是二项式[(1-p )+p ]n 的展开式的第k +1项. 拓展题例【例1】 把n 个不同的球随机地放入编号为1,2,…,m 的m 个盒子内,求1号盒恰有r 个球的概率.解法一:用独立重复试验的概率公式.把1个球放入m 个不同的盒子内看成一次独立试验,其中放入1号盒的概率为P =m1.这样n 个球放入m 个不同的盒子内相当于做n 次独立重复试验.由独立重复试验中事件A 恰好发生k 次的概率公式知,1号盒恰有r 个球的概率 P n (r )=C r np r(1-p )n -r=C r n·(m 1)r ·(1-m 1)n -r =nrn r n mm --⋅)1(C . 解法二:用古典概型.把n 个不同的球任意放入m 个不同的盒子内共有m n 个等可能的结果.其中1号盒内恰有r 个球的结果数为C r n(m -1)n -r,故所求概率P (A )=nrn r n mm --)1(C .答:1号盒恰有r 个球的概率为nrn r n mm --)1(C .【例2】 假设每一架飞机引擎在飞行中故障率为1-P ,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P 而言,4引擎飞机比2引擎的飞机更为安全?分析:4引擎飞机可以看作4次独立重复试验,要能正常运行,即求发生k 次(k ≥2)的概率.同理,2引擎飞机正常运行的概率即是2次独立重复试验中发生k 次(k ≥1)的概率,由此建立不等式求解.解:4引擎飞机成功飞行的概率为C 24P 2(1-P )2+C 34P 3(1-P )+C 44P 4=6P 2(1-P )2+4P 3(1-P )+P 4. 2引擎飞机成功飞行的概率为C 12P (1-P )+C 22P 2=2P (1-P )+P 2.要使4引擎飞机比2引擎飞机安全,只要6P 2(1-P )2+4P 3(1-P )+P 4≥2P (1-P )+P 2. 化简,分解因式得(P -1)2(3P -2)≥0. 所以3P -2≥0, 即得P ≥32. 答:当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全.。
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第53讲事件的独立性、条件概率和全概率公式(精讲)题型目录一览①事件的相互独立性②条件概率③全概率公式④贝叶斯公式一、条件概率1.定义:一般地,设A ,B 为两个事件,且()0P A >,称()()()|P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率.注:(1)条件概率|()P B A 中“|”后面就是条件;(2)若()0P A =,表示条件A 不可能发生,此时用条件概率公式计算|()P B A 就没有意义了,所以条件概率计算必须在()0P A >的情况下进行.2.性质(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即1|0()P B A ≤≤.(2)必然事件的条件概率为1,不可能事件的条件概率为0.(3)如果B 与C 互斥,则(||()(|))P B C A P B A P C A =+ .注:已知A 发生,在此条件下B 发生,相当于AB 发生,要求|()P B A ,相当于把A 看作新的基本事件空间计算AB 发生的概率,即()()()()()()()()|()n AB n AB n P AB P B A n A n A P A n Ω===Ω.二、相互独立与条件概率的关系1.相互独立事件的概念及性质(1)相互独立事件的概念对于两个事件A ,B ,如果)(|)(P B A P B =,则意味着事件A 的发生不影响事件B 发生的概率.设()0P A >,一、知识点梳理根据条件概率的计算公式,()()()()|P AB P B P B A P A ==,从而()()()P AB P A P B =.由此我们可得:设A ,B 为两个事件,若()()()P AB P A P B =,则称事件A 与事件B 相互独立.(2)概率的乘法公式由条件概率的定义,对于任意两个事件A 与B ,若()0P A >,则()|)()(P AB P A P B A =.我们称上式为概率的乘法公式.(3)相互独立事件的性质如果事件A ,B 互相独立,那么A 与B ,A 与B ,A 与B 也都相互独立.(4)两个事件的相互独立性的推广两个事件的相互独立性可以推广到(2)n n n >∈*N ,个事件的相互独立性,即若事件1A ,2A ,…,n A 相互独立,则这n 个事件同时发生的概率1212()()()()n n P A A A P A A P A = .2.事件的独立性(1)事件A 与B 相互独立的充要条件是()()()P AB P A P B =⋅.(2)当()0P B >时,A 与B 独立的充要条件是()()|P A B P A =.(3)如果()0P A >,A 与B 独立,则()()()()()()()|P AB P A P B P B A P B P A P A ⋅===成立.三、全概率公式1.全概率公式(1)|()()()()(|)P B P A P B A P A P B A =+;(2)定理1若样本空间Ω中的事件1A ,2A ,…,n A 满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()0i P A >,12i n = ,,,.则对Ω中的任意事件B ,都有12n B BA BA BA =+++ ,且11()()()()|nni i i i i P B P BA P A P B A ====∑∑.2.贝叶斯公式(1)一般地,当0()1P A <<且()0P B >时,有()()()()()()()()()()||||P A P B A P A P B A P A B P B P A P B A P A P B A ==+(2)定理2若样本空间Ω中的事件12n A A A ,,,满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()01i P A <<,12i n = ,,,.则对Ω中的任意概率非零的事件B ,都有12n B BA BA BA =+++ ,且1()()()()()()()()|||j j j j j niii P A P B A P A P B A P A B P B P A P B A ===∑注:贝叶斯公式体现了|()P A B ,()P A ,()P B ,|()P B A ,|()P B A ,()P AB 之间的关系,即()()()|P AB P A B P B =,()()()()()||P AB P A B P B P B A P A ==,|()()()()(|)P B P A P B A P A P B A =+.题型一事件的相互独立性1.判断事件是否相互独立的方法(1)定义法:事件(2)由事件本身的性质直接判定两个事件发生是否相互影响.二、题型分类精讲A.332B.【答案】D【题型训练】一、单选题,从乙口袋内摸出一个白球的概率是6【分析】根据题意,求得事件甲、乙、丙、丁的概率,结合相互独立事件的概念及判定方法,逐项判定,不相互独立,所以本序号说法不正确;二、多选题不能同时发生,但能同时不发生,所以不是对立事件,所以三、填空题四、解答题.一题多解是由多种途径获得同一数学问题的最终结论,一题多解不但达到了解题的目标要求,而且让情.某市举行了一场射击表演赛,规定如下:表演赛由甲、乙两位选手进行,每次只能有一位选手射击,题型二条件概率1.判断所求概率为条件概率的主要依据是题目中的知事件的发生影响了所求事件的概率,也认为是条件概率问题.运用条件概率的关键是求出【题型训练】一、单选题1.核酸检测是目前确认新型冠状病毒感染最可靠的依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为d二、多选题、表示事件错误;三、填空题个红球,从中任意取出一球,已知它不是白题型三全概率公式全概率公式复杂的概率计算分解为一些较为容易的情况分别进行考虑.【题型训练】一、单选题小时的学生中任意调查一名学生,则(二、多选题,所以表示买到的口罩分别为甲品牌、乙品牌、其他品牌,,对;三、填空题记任选一人去桂林旅游的事件为B ,则123()0.4,()()0.3P A P A P A ===,123(|)0.1,(|)0.2,(|)0.15P B A P B A P B A ===,由全概率公式得112233()(|)()(|)()(5|)30.15014P P A P B A P A P B A P A P B B A =⨯⨯++==++⨯.故答案为:0.145四、解答题附:()2P K k≥0.150.100.05k 2.072 2.706 3.841 (2)将甲乙生产的产品各自进行包装,每来自甲生产的概率为3,来自乙生产的概率为(1)假设四人实力旗鼓相当,即各比赛每人的胜率均为①A获得季军的概率;②D成为亚军的概率;,其余三人实力旗鼓相当,求题型四贝叶斯公式1.利用贝叶斯公式求概率的步骤第一步:利用全概率公式计算【题型训练】一、单选题。
§10.7独立事件同时发生的概率【复习目标】了解相互独立事件的意义,注意弄清事件的“互斥”与“相互独立”是不同的两个概念;理解相互独立事件同时发生的概率乘法公式;能正确分析复杂事件的构成,能综合运用互斥事件的概率加法公式和相互独立事件的概率乘法公式解决一些实际问题。
【课前预习】 这样的两个事件叫做相互独立事件,A 、B 为相互独立事件,则A 与B 、A 与B 、A 与B 均为 事件(是否独立?);如果事件A 、B 相互独立,那么事件A·B 发生(即 A 、B 同时发生)的概率()P A B ⋅= 。
若事件A 与B 相互独立,则下列不相互独立的事件为 ( )A .A 与B B .A 与BC .B 与BD .B 与A甲坛子里有3个白球、2个黑球,乙坛子里有2个白球、2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是 。
在某段时间里,甲地下雨的概率是0.2,乙地下雨的概率是0.3,假定两地在这段时间内是否下雨之间没有影响,则甲、乙两地都不下雨的概率是 。
某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中没有影响,则他第二次没有击中,其它3次都击中的概率是 。
甲、乙、丙三人独立地去破译一个密码,他们能译出的概率分别为111,,534,则此密码能译出的概率为 。
【典型例题】例 1 甲、乙两射手独立地射击同一目标,若他们各射击1次,击中目标的概率分别为0.9,0.8,求:目标恰好被甲击中的概率;目标不被击中的概率;目标被击中的概率。
例2 如图,a 、b 、c 、d 是四个处于断开状态下的开关,每个开关闭合的概率均为0.6,任意将其中两个闭合,求电路被接通的概率.例3 一个口袋中装有大小相同的2个白球和3个黑球.从中摸出两个球,求两球恰好颜色不同的概率;从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.【巩固练习】某人向某个目标射击,直至击中为止,每次射击击中目标的概率为13,则前5次可击中目标的概率为 。
11.3相互独立事件同时发生的概率●知识梳理1.相互独立事件:事件A是否发生对事件B发生的概率没有影响,这样的两个事件叫相互独立事件.2.独立重复实验:如果在一次试验中某事件发生的概率为p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为P n(k)p k(1-p)n-k.=C kn3.关于相互独立事件也要抓住以下特征加以理解:第一,相互独立也是研究两个事件的关系;第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的.4.互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.5.事件A与B的积记作A·B,A·B表示这样一个事件,即A与B同时发生.当A和B是相互独立事件时,事件A·B满足乘法公式P(A·B)=P(A)·P(B),还要弄清A·B,BA⋅的区别.A·B表示事件A与B 同时发生,因此它们的对立事件A与B同时不发生,也等价于A与B 至少有一个发生的对立事件即BA⋅,但A+,因此有A·B≠BA ·B =B A +.●点击双基1.(2019年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是A.p 1p 2B.p 1(1-p 2)+p 2(1-p 1)C.1-p 1p 2D.1-(1-p 1)(1-p 2) 解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1).答案:B2.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为A.0B.1C.2D.3 解析:由C k 5(21)k (21)5-k =C 15+k (21)k +1·(21)5-k -1,即C k 5=C 15+k ,k +(k +1)=5,k =2.答案:C3.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响) A.94B.901C.54D.95 解析:P =31×61×451=901. 答案:C4.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为________.解析:P =21×32×43+21×31×43+21×32×41=2411. 答案:2411 5.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________.解析:因为这位司机在第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P =(1-31)(1-31)×31=274. 答案:274 ●典例剖析【例1】(2019年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B ,于是P (A )=106=53,P (A )=52;P (B )=104=52,P (B )=53.由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A ·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P (B )=53·52=256. 答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件A ·B 发生)的概率为 P (A ·B )=P (A )·P (B )=52·53=256. ∴两人中至少有1人抽到足球票的概率为P =1-P (A ·B )=1-256=2519. 答:两人中至少有1人抽到足球票的概率是2519.【例2】有外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P(A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P(D )=108=54. 显然,事件A ·C 与事件B ·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P =P (A ·C +B ·D )=P (A ·C )+P (B ·D )=P (A )·P (C )+P (B )·P (D )=10059. ∴本次试验成功的概率为10059. 【例3】(2019年福州模拟题)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.(1)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;(2)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率.解:(1)由题意知,甲种已饮用5瓶,乙种已饮用2瓶.记“饮用一次,饮用的是甲种饮料”为事件A ,则p =P (A )=21. 题(1)即求7次独立重复试验中事件A 发生5次的概率为P 7(5)=C 57p 5(1-p )2=C 27(21)7=12821. (2)有且仅有3种情形满足要求:甲被饮用5瓶,乙被饮用1瓶;甲被饮用5瓶,乙没有被饮用;甲被饮用4瓶,乙没有被饮用.所求概率为P 6(5)+P 5(5)+P 4(4)=C 65p 5(1-p )+C 55p 5+C 44p 4=163. 答:甲饮料饮用完毕而乙饮料还剩3瓶的概率为12821,甲饮料被饮用瓶数比乙饮料被饮用瓶数至少多4瓶的概率为163.●闯关训练夯实基础1.若A 与B 相互独立,则下面不相互独立事件有A.A 与AB.A 与BC.A 与BD.A 与B解析:由定义知,易选A.答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是A.0.12B.0.88C.0.28D.0.42解析:P =(1-0.3)(1-0.4)=0.42.答案:D3.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.解析:该生被选中,他解对5题或4题.∴P =(53)5+C 45×(53)4×(1-53)=31251053. 答案:31251053 4.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一种报纸的概率为________.解析:P =1-(1-0.6)(1-0.3)=0.72.答案:0.72培养能力5.在未来3天中,某气象台预报每天天气的准确率为0.8,则在未来3天中,(1)至少有2天预报准确的概率是多少?(2)至少有一个连续2天预报都准确的概率是多少?解:(1)至少有2天预报准确的概率即为恰有2天和恰有3天预报准确的概率,即C23·0.82·0.2+C33·0.83=0.896.∴至少有2天预报准确的概率为0.896.(2)至少有一个连续2天预报准确,即为恰有一个连续2天预报准确或3天预报准确的概率为2·0.82·0.2+0.83=0.768.∴至少有一个连续2天预报准确的概率为0.768.6.(2019年南京模拟题)一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p,计算在这一时间段内,(1)恰有一套设备能正常工作的概率;(2)能进行通讯的概率.解:记“第一套通讯设备能正常工作”为事件A,“第二套通讯设备能正常工作”为事件B.由题意知P(A)=p3,P(B)=p3,P (A )=1-p 3,P (B )=1-p 3.(1)恰有一套设备能正常工作的概率为P (A ·B +A ·B )=P (A ·B )+P (A ·B )=p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为P (A ·B )=P (A )·P (B )=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为P (A ·B +A ·B )+P (A ·B )=2p 3-2p 6+p 6=2p 3-p 6.方法二:两套设备都不能正常工作的概率为P (A ·B )=P (A )·P (B )=(1-p 3)2.至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P (A ·B )=1-P (A )·P (B )=1-(1-p 3)2=2p 3-p 6.答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6.7.已知甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球.现从两袋中各取两个球,试求取得的4个球中有3个白球和1个黑球的概率.解:从甲袋中取2个白球,从乙袋中取1个黑球和1个白球的概率为2723C C ×291415C C C =635; 从甲袋中取1个黑球和1个白球,从乙袋中取2个白球的概率为271413C C C ×2925C C =6310. 所以,取得的4个球中有3个白球和1个黑球的概率为635+6310=6315=215. 探究创新8.(2019年湖南)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.解:(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件, 由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅,92)(,121)(,41)(C A P C B P B A P 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅.92)()(,121)](1[)(,41)](1[)(C P A P C P B P B P A P ① ② ③由①③得P (B )=1-89P (C ), 代入②得27[P (C )]2-51P (C )+22=0.解得P (C )=32或911(舍去). 将P (C )=32分别代入③②可得P (A )=31,P (B )=41, 即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是31,41,32. (2)记D 为从甲、乙、丙加工的零件中各取一个检验至少有一个一等品的事件,则P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-32·43·31=65. 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为65. ●思悟小结1.应用公式时,要注意前提条件,只有对于相互独立事件A 与B 来说,才能运用公式P (A ·B )=P (A )·P (B ).2.在学习过程中,要善于将较复杂的事件分解为互斥事件的和及独立事件的积,或其对立事件.3.善于将具体问题化为某事件在n 次独立重复试验中发生k 次的概率.●教师下载中心教学点睛1.首先要搞清事件间的关系(是否彼此互斥、是否互相独立、是否对立),当且仅当事件A和事件B互相独立时,才有P(A·B)=P (A)·P(B).2.A、B中至少有一个发生:A+B.(1)若A、B互斥:P(A+B)=P(A)+P(B),否则不成立.(2)若A、B相互独立(不互斥).法一:P(A+B)=P(A·B)+P(A·B)+P(A·B);法二:P(A+B)=1-P(A·B);法三:P(A+B)=P(A)+P(B)-P(AB).3.某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高正确率.要注意“至多”“至少”等题型的转化,如例1.4.n次独立重复试验中某事件发生k次的概率P n(k)=C knp k(1-p)n-k正好是二项式[(1-p)+p]n的展开式的第k+1项.拓展题例【例1】把n个不同的球随机地放入编号为1,2,…,m的m 个盒子内,求1号盒恰有r个球的概率.解法一:用独立重复试验的概率公式.把1个球放入m个不同的盒子内看成一次独立试验,其中放入1号盒的概率为P=m1.这样n个球放入m个不同的盒子内相当于做n次独立重复试验.由独立重复试验中事件A恰好发生k次的概率公式知,1号盒恰有r个球的概率P n(r)=C rn p r(1-p)n-r=C rn·(m1)r·(1-m1)n-r=nrnrnmm--⋅)1(C.解法二:用古典概型.把n个不同的球任意放入m个不同的盒子内共有m n 个等可能的结果.其中1号盒内恰有r 个球的结果数为C r n (m-1)n -r ,故所求概率P (A )=n r n r n m m --)1(C .答:1号盒恰有r 个球的概率为nr n r n m m --)1(C . 【例2】假设每一架飞机引擎在飞行中故障率为1-P ,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P 而言,4引擎飞机比2引擎的飞机更为安全?分析:4引擎飞机可以看作4次独立重复试验,要能正常运行,即求发生k 次(k ≥2)的概率.同理,2引擎飞机正常运行的概率即是2次独立重复试验中发生k 次(k ≥1)的概率,由此建立不等式求解.解:4引擎飞机成功飞行的概率为C 24P 2(1-P )2+C 34P 3(1-P )+C 44P 4=6P 2(1-P )2+4P 3(1-P )+P 4.2引擎飞机成功飞行的概率为C 12P (1-P )+C 22P 2=2P (1-P )+P 2.要使4引擎飞机比2引擎飞机安全,只要6P 2(1-P )2+4P 3(1-P )+P 4≥2P (1-P )+P 2.化简,分解因式得(P -1)2(3P -2)≥0.所以3P -2≥0,即得P ≥32. 答:当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全.。
第3课时 相互独立事件同时发生的概率1.事件A (或B )是否发生对事件B (或A )发生的概率 ,这样的两个事件叫独立事件.2.设A ,B 是两个事件,则A ·B 表示这样一个事件:它的发生,表示事件A ,B ,类似地可以定义事件A 1·A 2·……A n .3.两个相互独立事件A ,B 同时发生的概率,等于每个事件发生的概率的积,即P(A ·B) = 一般地,如果事件12n A ,A ,,A 相互独立,那么:P(A 1·A 2……A n )= .4.n 次独立重复试验中恰好发生k 次的概率:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是1k k n k n n P (k )C P (P )-=-.A 、B 、C 三类不同的元件连接成两个系统1N 、2N ,当元件A 、B 、C 都正常工作时,系统1N 正常工作,当元件A 正常工作且元件B 、C 至少有1个正常工作时系统2N 正常工作,已知元件A 、B 、C 正常工作的概率依次为0.8、0.9、0.9,分别求系统1N 、2N 正常工作时的概率.解:分别记元件A 、B 、C 正常工作为事件A 、B 、C ,由已知条件080090090P(A ).,P(B ).,P(C ).===(Ⅰ)因为事件A 、B 、C 是相互独立的,所以,系统1N 正常工作的概率10800900900648P P(A B C )P(A )P(B )P(C )....=∙∙=∙∙=⨯⨯= 故系统1N 正常工作的概率为0.648. (Ⅱ)系统2N 正常工作的概率()()()()()()21111090010P P(A )P B C P A P B P C ,P B P B ..,⎡⎤⎡⎤=∙-∙=∙-∙⎣⎦⎣⎦=-=-=()()[]21109001008010100100800990792P C P C ..,P .......=-=-=∴=⨯-⨯=⨯= 故系统正常工作的概率为0.792.变式训练1. 有甲、乙两地生产某种产品,甲地的合格率为90%,乙地的合格率为92%,从两地生产的产品中各抽取1 件,都抽到合格品的概率等于 ( )A .112%B .9.2%C .82.8%D .0.8%解:C例2. 箱内有大小相同的20个红球,80个黑球,从中任意取出1个,记录它的颜色后再放回箱内,进行搅拌后再任意取出1个,记录它的颜色后又放回,假设三次都是这样抽取,试回答下列问题:①求事件A :“第一次取出黑球,第二次取出红球,第三次取出黑球”的概率;②求事件B :“三次中恰有一次取出红球”的概率.解:(① 12516;② 12548 变式训练2:从甲袋中摸出一个红球的概率是31,从乙袋中摸出1 个红球的概率是21,从两袋中各摸出1个球,则32等于 ( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰好有1个红球的概率解:C例3. 两台雷达独立工作,在一段时间内,甲雷达发现飞行目标的概率是0.9,乙雷达发现目标的概率是0.85,计算在这一段时间内,下列各事件的概率:(1)甲、乙两雷达均未发现目标;(2)至少有一台雷达发现目标;(3)至多有一台雷达发现目标解:①0.015; ②0.985; ③0.235变式训练3:甲、乙、丙三人分别独立解一道题,甲做对的概率为12,甲、乙、丙三人都做对的概率是124,甲、乙、丙三人全做错的概率是14. (1)求乙、丙两人各自做对这道题的概率;(2)求甲、乙、丙三人中恰有一人做对这一道题的概率.解: ①31,41或41,31;②2411 例4. 有三种产品,合格率分别为0. 90,0.95和0.95,各取一件进行检验.(1)求恰有一件不合格的概率;(2)求至少有两件不合格的概率.(精确到0.01)解:设三种产品各取一件,抽到的合格产品的事件分别为A 、B 和C (Ⅰ)因为事件A 、B 、C 相互独立,恰有一件不合格的概率为()()()()()()()()()()()()0.900.950.050.900.050.950.100.950.950.176P A B C P A B C P A B C P A P B P C P A P B P C P A P B P C ∙∙+∙∙+∙∙=∙∙+∙∙+∙∙=⨯⨯+⨯⨯+⨯⨯= 答:恰有一件不合格的概率为0.176.(Ⅱ)解法一:至少有两件不合格的概率为()()()()220.900.0520.100.950.050.100.050.012P A B C P A B C P A B C P A B C∙∙+∙∙+∙∙+∙∙=⨯+⨯⨯⨯+⨯=答:至少有两件不合格的概率为0.012.解法二:三件都合格的概率为: ()()()()20.900.950.812P A B C P A P B P C ∙∙=∙∙=⨯=由(Ⅰ)可知恰好有一件不合格的概率为0.176,所以至少有两件不合格的概率为 ()()10.17610.8120.1760.012P A B C -⎡∙∙+⎤=-+=⎣⎦答:至少有两件不合格的概率为0.012. 变式训练4. 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92.①分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;②从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.651.当且仅当事件A 与事件B 互相独立时,才有()()()P AB P A P B =∙ ,故首先要搞清两个事件的独立性.2.独立重复试验在概率论中占有相当重要地地位,这种试验的结果只有两种,我们主要研究在n 次独立重复试验中某事件发生k 次的概率:()()1n k k k n n P k C P P -=-,其中P 是1 次试验中某事件发生的概率,其实()1n k k k n C P P --正好是二项式()1n P P ⎡-+⎤⎣⎦的展开式中的第k+1项,很自然地联想起二项式定理.。
专题54 相互独立事件同时发生的概率考纲导读:考纲要求:了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率.会计算事件在n次独立重复试验中恰好发生k次的概率.考纲解读:高考对相互独立事件的考查关键在于让考生能灵活应用“相互独立事件的概率乘法”等基础知识处理问题.“事件在n次独立重复试验中恰好发生k次”的概率常不单独命题,而常以和事件与积事件的解决概率问题的关键是先要明确是什么概型,然后进行分解为“和事件与积事件”再等价转化处理.考点精析:考点1、相互独立事件的概率此类试题直接考查相互独立事件的概率计算,关键是弄清两事件相互独立的条件,牢记公式,充分运用公式进行准确、灵活地计算.【考例1】判断下列各题中给出的事件是否是相互独立事件.(1)甲盒中有6个白球、4个黑球,乙盒中有3个白球、5个黑球.从甲盒中摸出一个球称为甲试验,从乙盒中摸出一个球称为乙试验.事件A1表示“从甲盒中取出的是白球”,事件B1表示“从乙盒中取出的是白球”.(2)盒中有4个白球、3个黑球,从盒中陆续取出两个球,用A2表示事件“第一次取出的是白球”,把取出的球放回盒中,用B2表示事件“第二次取出的是白球”.(3)盒中有4个白球、3个黑球,从盒中陆续取出两个球,用A3表示“第一次取出的是白球,”取出的球不放回,用B3表示“第二次取出的是白球”.解题思路:事件A与B是相互独立事件,当且仅当事件A和B是否发生,相互之间没有影响.所谓没有影响,是指A、B两事件中有一事件发生,不仅不能决定另一事件是否发生,而且还不会影响另一事件发生的概率.正确答案:(1)甲试验与乙试验是两个相互独立的试验.事件A1和B1是否发生,相互之间没有影响,故事件A1与事件B1是相互独立事件.(2)在有放回的取球中,事件A2和B2是否发生相互之间没有任何影响,因而它们是相互独立事件.(3)在不放回的取球中,事件A发生后,事件B的概率发生了改变,因此A3与B3不是相互独立事件.回顾与反思:相互独立事件,也是对两个事件而言的,只不过这两个事件的关系具有特殊性:其中一个事件是否发生对另一事件发生的概率没有影响.知识链接:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫相互独立事件若A与B是相互独立事件,则A与B,A与B,A与B也都是相互独立事件.【考例2】(·西城区抽样)在一天内甲、乙、丙三台设备是否需要维护相互之间没有影响,且甲、乙、丙在一天内不需要维护的概率依次为0.9、0.8、0.85. 则在一天内(I)三台设备都需要维护的概率是多少?(II)恰有一台设备需要维护的概率是多少?(III)至少有一台设备需要维护的概率是多少?解题思路:设出基本事件A、B、C分别代表甲、乙、丙在一天内不需要维护的事件,分别用字母表示各个符合条件的事件,并用概率乘法公式求解即可.正确答案:记甲、乙、丙三台设备在一天内不需要维护的事件分别为A,B,C,则.85.0)(,8.0)(,9.0)(===C P B P A P(I )三台设备都需要维护的概率)()()()(1C P B P A P ABC P p ⋅⋅===(1-0.9)×(1-0.8)×(1-0.85)=0.003.答:三台设备都需要维护的概率为0.003.(II )恰有一台设备需要维护的概率 )()()(2C B A P C B A P C B A P p ⋅⋅+⋅⋅+⋅⋅==(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85) =0.329.答:恰有一台设备需要维护的概率为0.329.(III )三台设备都不需要维护的概率612.0)()()()(3=⋅⋅==C P B P A P ABC P p , 所以至少有一台设备需要维护的概率.388.0134=-=p p答:至少有一台设备需要维护的概率为0.388.回顾与反思:本题以设备维护为背景,考查了概率事件的分析与概率的求解,互斥事件至少有一个发生的概率、相互独立事件同时发生的概率的求解问题. 通过概率应用题考查了考生分析问题后抓住问题的本质,针对具体事件分析求解得出概率的能力.知识链接:两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P (A ·B )=P (A )·P (B ).一般地,如果事件A 1,A 2,…,A n 相互独立,那么n 个事件同时发生的概率,等于每个事件发生的概率的积,即P (A 1·A 2·…·A n )=P (A 1)·P (A 2)·…·P (A n ).考点2、n 次独立重复试验恰好发生k 次的概率此类试题通常会以综合题形式出现,既可能有互斥事件,又有可能的相互独立事件,关键是弄清两事件相互独立的条件,牢记公式,充分运用公式进行准确、灵活地计算.【考例1】 (·杭州一模)若血色素化验的准确率是p, 则在10次化验中,最多一次不准的概率为 .解题思路:最多一次不准确包括一次不准确和全部准确两种情况.正确答案:由题意知血色素化验的准确率为P,则不准确的概率为(1-P) .由独立重复试验发生的概率知:最多一次不准确包括一次不准确和全部准确,所以所求概率为:9110101010)1(P P C P C ⋅-⋅+⋅回顾与反思:本题考查利用独立重复试验发生的概率公式n m n m P P C m n m m n ,,()1(≤-⋅⋅- 为正整数),及“最多”字眼的含义运用.知识链接:独立重复试验:是指在同样的条件下,重复地各次之间相互独立地进行的一种试验.若在1次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k . 【考例2】 (·宿迁模)甲、乙两人进行乒乓球比赛,比赛采取七局四胜制,即先胜四局者获胜,比赛结束。
11.3 相互独立事件同时发生的概率●知识梳理1.相互独立事件:事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫相互独立事件.2.独立重复实验:如果在一次试验中某事件发生的概率为p ,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k. 3.关于相互独立事件也要抓住以下特征加以理解:第一,相互独立也是研究两个事件的关系;第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的.4.互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.5.事件A 与B 的积记作A ·B ,A ·B 表示这样一个事件,即A 与B 同时发生. 当A 和B 是相互独立事件时,事件A ·B 满足乘法公式P (A ·B )=P (A )·P (B ),还要弄清A ·B ,B A ⋅的区别. A ·B 表示事件A 与B 同时发生,因此它们的对立事件A 与B 同时不发生,也等价于A 与B 至少有一个发生的对立事件即B A +,因此有A ·B ≠B A ⋅,但A ·B =B A +.●点击双基1.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是A.p 1p 2B.p 1(1-p 2)+p 2(1-p 1)C.1-p 1p 2D.1-(1-p 1)(1-p 2) 解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1).答案:B2.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为A.0B.1C.2D.3解析:由C k 5(21)k (21)5-k =C 15+k (21)k +1·(21)5-k -1, 即C k 5=C 15+k ,k +(k +1)=5,k =2.答案:C3.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)A.94 B.901 C.54 D.95 解析:P =31×61×451=901.答案:C4.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为________. 解析:P =21×32×43+ 21×31×43+ 21×32×41=2411. 答案:2411 5.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________.解析:因为这位司机在第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P =(1-31)(1-31)×31=274.答案:274●典例剖析【例1】 某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B ,于是P (A )=106= 53,P (A )=52; P (B )=104= 52,P (B )=53. 由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A ·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P (B )=53·52=256.答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件A ·B 发生)的概率为P (A ·B )=P (A )·P (B )=52·53=256. ∴两人中至少有1人抽到足球票的概率为 P =1-P (A ·B )=1-256=2519. 答:两人中至少有1人抽到足球票的概率是2519. 【例2】 有外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P (A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P (D )=108=54. 显然,事件A ·C 与事件B ·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P =P (A ·C +B ·D )=P (A ·C )+P (B ·D )=P (A )·P (C )+P (B )·P (D )=10059. ∴本次试验成功的概率为10059. 【例3】 (2004年福州模拟题)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.(1)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;(2)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率. 解:(1)由题意知,甲种已饮用5瓶,乙种已饮用2瓶. 记“饮用一次,饮用的是甲种饮料”为事件A ,则p =P (A )=21. 题(1)即求7次独立重复试验中事件A 发生5次的概率为P 7(5)=C 57p 5(1-p )2=C 27(21)7=12821. (2)有且仅有3种情形满足要求:甲被饮用5瓶,乙被饮用1瓶;甲被饮用5瓶,乙没有被饮用;甲被饮用4瓶,乙没有被饮用.所求概率为P 6(5)+P 5(5)+P 4(4)=C 65p 5(1-p )+C 55p 5+C 44p 4=163. 答:甲饮料饮用完毕而乙饮料还剩3瓶的概率为12821,甲饮料被饮用瓶数比乙饮料被饮用瓶数至少多4瓶的概率为163. ●闯关训练 夯实基础1.若A 与B 相互独立,则下面不相互独立事件有 A.A 与AB.A 与BC. A 与BD. A 与B解析:由定义知,易选A. 答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是A.0.12B.0.88C.0.28D.0.42 解析:P =(1-0.3)(1-0.4)=0.42. 答案:D3.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.解析:该生被选中,他解对5题或4题.∴P =(53)5+C 45×(53)4×(1-53)=31251053. 答案:312510534.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一种报纸的概率为________.解析:P =1-(1-0.6)(1-0.3)=0.72. 答案:0.72 培养能力5.在未来3天中,某气象台预报每天天气的准确率为0.8,则在未来3天中, (1)至少有2天预报准确的概率是多少?(2)至少有一个连续2天预报都准确的概率是多少? 解:(1)至少有2天预报准确的概率即为恰有2天和恰有3天预报准确的概率,即C 23·0.82·0.2+C 33·0.83=0.896.∴至少有2天预报准确的概率为0.896.(2)至少有一个连续2天预报准确,即为恰有一个连续2天预报准确或3天预报准确的概率为2·0.82·0.2+0.83=0.768.∴至少有一个连续2天预报准确的概率为0.768. 6.一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率; (2)能进行通讯的概率.解:记“第一套通讯设备能正常工作”为事件A ,“第二套通讯设备能正常工作”为事件B .由题意知P (A )=p 3,P (B )=p 3,P (A )=1-p 3,P (B )=1-p 3.(1)恰有一套设备能正常工作的概率为P (A ·B + A ·B )=P (A ·B )+P (A ·B ) =p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为 P (A ·B )=P (A )·P (B )=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为 P (A ·B + A ·B )+P (A ·B )=2p 3-2p 6+p 6=2p 3-p 6. 方法二:两套设备都不能正常工作的概率为 P (A ·B )=P (A )·P (B )=(1-p 3)2. 至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P (A ·B )=1-P (A )·P (B )=1-(1-p 3)2=2p 3-p 6. 答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6. 7.已知甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球.现从两袋中各取两个球,试求取得的4个球中有3个白球和1个黑球的概率.解:从甲袋中取2个白球,从乙袋中取1个黑球和1个白球的概率为2723C C ×291415C C C =635; 从甲袋中取1个黑球和1个白球,从乙袋中取2个白球的概率为271413C C C ×2925C C =6310. 所以,取得的4个球中有3个白球和1个黑球的概率为635+6310=6315=215. 探究创新8.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件,由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅,92)(,121)(,41)(C A P C B P B A P即⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅.92)()(,121)](1[)(,41)](1[)(C P A P C P B P B P A P由①③得P (B )=1-89P (C ), 代入②得27[P (C )]2-51P (C )+22=0. 解得P (C )=32或911(舍去). 将P (C )=32分别代入③②可得P (A )=31,P (B )=41, 即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是31,41,32.(2)记D 为从甲、乙、丙加工的零件中各取一个检验至少有一个一等品的事件,则 P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-32·43·31=65. 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为65. ●思悟小结1.应用公式时,要注意前提条件,只有对于相互独立事件A 与B 来说,才能运用公式P (A ·B )=P (A )·P (B ).2.在学习过程中,要善于将较复杂的事件分解为互斥事件的和及独立事件的积,或其对立事件.3.善于将具体问题化为某事件在n 次独立重复试验中发生k 次的概率. ●教师下载中心 教学点睛1.首先要搞清事件间的关系(是否彼此互斥、是否互相独立、是否对立),当且仅当事件A 和事件B 互相独立时,才有P (A ·B )=P (A )·P (B ).2.A 、B 中至少有一个发生:A +B .(1)若A 、B 互斥:P (A +B )=P (A )+P (B ),否则不成立. (2)若A 、B 相互独立(不互斥).法一:P (A +B )=P (A ·B )+P (A ·B )+P (A ·B ); 法二:P (A +B )=1-P (A ·B );法三:P (A +B )=P (A )+P (B )-P (AB ).① ② ③3.某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高正确率.要注意“至多”“至少”等题型的转化,如例1.4.n 次独立重复试验中某事件发生k 次的概率P n (k )=C k n p k (1-p )n -k正好是二项式[(1-p )+p ]n 的展开式的第k +1项. 拓展题例【例1】 把n 个不同的球随机地放入编号为1,2,…,m 的m 个盒子内,求1号盒恰有r 个球的概率.解法一:用独立重复试验的概率公式.把1个球放入m 个不同的盒子内看成一次独立试验,其中放入1号盒的概率为P =m1.这样n 个球放入m 个不同的盒子内相当于做n 次独立重复试验.由独立重复试验中事件A 恰好发生k 次的概率公式知,1号盒恰有r 个球的概率 P n (r )=C r np r(1-p )n -r=C r n·(m 1)r ·(1-m 1)n -r =nrn r n m m --⋅)1(C .解法二:用古典概型.把n 个不同的球任意放入m 个不同的盒子内共有m n 个等可能的结果.其中1号盒内恰有r 个球的结果数为C r n (m -1)n -r ,故所求概率P (A )=nrn r n mm --)1(C .答:1号盒恰有r 个球的概率为nrn r n m m --)1(C .【例2】 假设每一架飞机引擎在飞行中故障率为1-P ,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P 而言,4引擎飞机比2引擎的飞机更为安全?分析:4引擎飞机可以看作4次独立重复试验,要能正常运行,即求发生k 次(k ≥2)的概率.同理,2引擎飞机正常运行的概率即是2次独立重复试验中发生k 次(k ≥1)的概率,由此建立不等式求解.解:4引擎飞机成功飞行的概率为C 24P 2(1-P )2+C 34P 3(1-P )+C 44P 4=6P 2(1-P )2+4P 3(1-P )+P 4. 2引擎飞机成功飞行的概率为C 12P (1-P )+C 22P 2=2P (1-P )+P 2.要使4引擎飞机比2引擎飞机安全,只要6P 2(1-P )2+4P 3(1-P )+P 4≥2P (1-P )+P 2. 化简,分解因式得(P -1)2(3P -2)≥0. 所以3P -2≥0, 即得P ≥32. 答:当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全.。
相互独立事件同时发生的概率【考纲要求】1、理解超几何分布及其导出过程,并能进行简单的应用.2、了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.【基础知识】(1)相互独立事件的概率1.相互独立事件的定义:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件(设A, B 为两个事件,如果P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立)若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.(2)独立重复试验1 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)n P P -+展开式的第1k +项3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率是k n k k n n p p C k P --==)1()(ξ,(n k ,...3,2,1,0=).正好是二项式n p p ])1[(+-的展开式的第1+k 项。
所以记作ξ~),(p n B ,读作ξ服从二项分布,其中p n ,为参数.(3)温馨提示1、互斥事件和相互独立事件的区别:两事件互斥是指同一次试验中不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生。
高三第一轮复习数学--相互独立事件同时发生的概率一、教学目标:了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。
会计算事件在n 次独立重复试验中恰好发生k 次的概率。
二、教学重点:对相互独立事件、独立重复试验的概念的理解及公式的运用是重点与难点。
三、教学过程:(一)主要知识:1、相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫独立事件。
2、事件A•B :设A ,B 是两个事件,则A•B 表示这样一个事件:它的发生,就是事件A ,B 同时发生,类似地可以定义事件12n A A A .3、相互独立事件的概率乘法公式两个相互独立事件A ,B 同时发生的概率,等于每个事件发生的概率的积,即P(A B )P(A )P(B )=一般地,如果事件12n A ,A ,,A 相互独立,那么:1212n n P(A A A )P(A )P(A )P(A )=4、独立重复试验:在同样的条件下重复地、各次试验之间相互独立地进行的一种试验.5、n 次独立重复试验中恰好发生k 次的概率:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 的概率是 .1k k n k n n P (k )C P (P )-=-(二)例题分析:例1:甲、乙、丙3人各进行一次射击,如果甲、乙2人击中目标的概率是0.8,丙击中目标的概率是0.6,计算:(1)3人都击中目标的概率; (2)至少有2人击中目标的概率;(3)其中恰有1人击中目标的概率.解:(1)记“甲、乙、丙各射击一次,击中目标”分别为事件A 、B 、C 彼此独立,三人都击中目标就是事件A·B·C 发生,根据相互独立事件的概率乘法公式得:P(A·B·C)=P(A)·P(B)·P(C)=0.8×0.8×0.6=0.384(2)至少有2人击中目标包括两种情况:一种是恰有2人击中,另一种是3人都击中,其中恰有2人击中,又有3种情形,即事件A·B·C ,A·B ·C,A ·B·C 分别发生,而这3种事件又互斥, 故所求的概率是P(A·B·C )+P(A·B ·C)+P(A ·B·C)+P(A·B·C) P(A) ·P(B)·P(C )+P(A) ·P(B )·P(C)+P(A )·P(B) ·P(C)+P(A) ·P(B) ·P(C) =0.8×0.8×0.4+0.8×0.2×0.6+0.2×0.8×0.6+0.8×0.8×0.6=0.832(3)恰有1人击中目标有3种情况,即事件A·B ·C , A ·B·C , A ·B ·C,且事件分别互斥,故所求的概率是P(A·B ·C )+P(A ·B·C )+P(A ·B ·C)= P(A)·P(B )·P(C )+P(A )·P(B) ·P(C )+P(A )·P(B )·P(C)=0.8×0.2×0.4+0.2×0.8×0.4+0.2×0.2×0.6=0.152.说明:题(3)还可用逆向思考,先求出3人都未击中的概率是0.016,再用1-0.832-0.016可得.例2:(2003 江苏)有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. (Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到0.001) 解: 设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C.(Ⅰ)95.0)()(,90.0)(===C P B P A P , .50.0)()(,10.0)(===C P B P A P 因为事件A ,B ,C 相互独立,恰有一件不合格的概率为176.095.095.010.005.095.090.02)()()()()()()()()()()()(=⨯⨯+⨯⨯⨯=⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅C P B P A P C P B P A P C P B P A P C B A P C B A P C B A P(Ⅱ)解法一:至少有两件不合格的概率为)()()()(C B A P C B A P C B A P C B A P ⋅⋅+⋅⋅+⋅⋅+⋅⋅012.005.010.095.005.010.0205.090.022=⨯+⨯⨯⨯+⨯=解法二:三件产品都合格的概率为812.095.090.0)()()()(2=⨯=⋅⋅=⋅⋅C P B P A P C B A P由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至有两件不合格的概率为.012.0)176.0812.0(1]176.0)([1=+-=+⋅⋅-C B A P思维点拨:解题时要注意把一个事件分拆为n 个互斥事件时,要考虑周全。
课时3 独立事件同时发生的概率
一.复习目标
1. 理解相互独立事件的意义;
2. 会用相互独立事件概率的乘法公式计算一些事件的概率; 3. 会计算事件在n 次独立事件重复试验中恰好发生k 次的概率。
二.知识梳理:
1. 相互独立事件:______________________________________________________ 注意与互斥事件的区分。
并试举例区分这两种事件。
2.A 、B 是两个相互独立的事件,则两个相互独立事件同时发生的概率,等于每个事件
发生的概率的积。
即()()()B P A P B A P ⋅=⋅。
依此推广,如果事件n A A A ,,,21⋅⋅⋅相互独立,那么这n 个事件同时发生的概率为:()()()()n n A P A P A P A A A P ⋅⋅⋅⋅=⋅⋅⋅⋅2121 3.在n 次独立重复实验中,如果事件A 在其中1次试验中发生的概率是P ,那么在n
次独立重复试验中这个事件恰好发生k 次的概率:()()
k
n k
k n n P P C k P --=1
三.基础训练:
1. 甲坛子里有3个白球、2个黑球,乙坛子里有2个白球、2个黑球,从这两个坛子
里分别摸出1个球,它们都是白球的概率是
2. 生产一种零件,甲车间的合格率是96%,乙车间的合格率是97%,从它们生产的零
件中各抽取1件,都抽到合格品的概率
3. 在某段时间里,甲地下雨的概率是0.2,乙地下雨的概率是0.3,假定两地在这段
时间内是否下雨之间没有影响,则甲、乙两地都不下雨的概率是
4. 某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中
没有影响,则他第二次没有击中,其它3次都击中的概率是
5. 某电子设备有9个元件组成,其中任何1个元件损坏,这个设备就不能工作,假定
每个元件能使用3000小时的概率是0.99,则 这个电子设备能工作3000小时的概率(保留两个有效数字)是
6. 某一批蚕豆种子,如果每1粒发芽的概率为90%,播下5粒种子,则其中恰好有4
粒发芽的概率是
四.典型例题:
例1.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):
(1) 5次预报中恰有4次准确的概率; (2) 5次预报中至少4次准确的概率。
例2.甲、乙两人分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率是0.9,求 (1)两人都击中的概率;
(2)两人中有1人射中的概率; (3)两人中至少有1人射中的概率; (4)两人中至多有1人射中的概率。
例3.用A 、B 、C 三类不同的元件连接成两个系统.,21N N 当元件A 、B 、C 都正常工作时,
系统1N 正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统2N 正常工作。
已知A 、B 、C 正常工作的概率依次为0.80,0.90,0.90,分别求系统21,N N 正常工作的概率。
1N
2N
四.反馈练习
1.三人独立地破译一个密码,他们能单独译出的概率分别为,4
1
,
31,51假设他们破译密码是
彼此独立的,则此密码被译出的概率是
2.某人射击5次,每次中靶的概率为0.9,则他至少两次中靶的概率为
3.在一次问卷调查中,订阅《金陵晚报》的概率为0.6,订阅《扬子晚报》的概率为0.3则至多订阅其中一份报纸的概率为
4.甲投篮的命中率为0.8,乙投篮的命中率为0.7,每人各投3次,两人恰好都投中2次的概率
5. 甲、乙两队进行排球比赛。
已知在一局比赛中甲队胜的概率为
,3
2
没有平局。
求: (1)若进行三局二胜制,先胜二局的为胜。
甲获胜的概率为多少? (2)若进行五局三胜制,先胜三局的为胜。
甲获胜的概率为多少?
6. 已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为0020。
(1) 假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率; (2) 要使敌机一旦进入这个区域内有0090以上的概率被击中,至少需要布置几门这
类高射炮?
7. 某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立)。
(1) 求至少3人同时上网的概率;
(2) 至少几人同时上网的概率小于0.3?
8. 在一次抗洪抢险中,准备用射击的方法引爆从桥上漂流而下的一个巨大的汽油罐,已知
只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆。
每次射击是相互独
立的,且命中的概率都是
3
2。
(1) 求油罐被引爆的概率;
(2) 如果引爆或子弹打光则停止射击,设射击次数为n ,求n 不小于4的概率。
答案:
一. 课前预习
1.0.3; 2.0.9312; 3.0.56; 4.0.0729; 5.0.91 6.0.33 二. 典型例题 例1
(1)0. 72; (2)0.26; (3)0.98; (4)0.28
例2
.792.0:;648.0:21N N 例3
(1)0. 41;(2)0.74. 三.反馈练习
1.0.6;
2.0.999954;
3.0.82;
4.0.169;
5.(1)
2720 (2)81
64。