1.1 探索勾股定理(1)
- 格式:ppt
- 大小:411.00 KB
- 文档页数:10
第一章 勾股定理 1.1探索勾股定理〔1〕学习目标:掌握勾股定理并能利用它来解决简单的实际问题。
预习案课前导学一、自主预习〔感知〕1、三角形的三边关系:三角形的任意两边之和;任意两边之差.2、自学感知:探索直角三角形三边的特殊关系:〔1〕画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表; 〔2〕猜测:直角三角形的三边满足什么关系? 尝试练习〔1〕直角三角形两直角边为3和4,那么另一边为. 〔2〕求出x 的值.学习案知识点拔 二、课堂探究如果以下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?图形 A 的面积 B 的面积 C 的面积A 、B 、C 面积的关系图1-1 图1-2 图1-3图1-4思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。
勾股定理:直角三角形等于;几何语言表述:如图1.1-1,在Rt ΔABC 中, C = 90°假设BC=a ,AC=b ,AB=c ,那么上面的定理可以表示为: 。
课内训练1、求以下图中字母所代表的正方形的面积2、求出以下各图中x 的值。
反应案根底训练1.在△ABC 中,∠C=90°,直角三角形1直角边a 直角边b 斜边c 三边关系满足关系3 4a 2b 2C 2直角三角形2直角边a 直角边b斜边c 三边关系满足关系513a 2b 2C 2图1.1-1〔1〕假设BC=5,AC=12,那么AB=;〔2〕假设BC=3,AB=5,那么AC=;2.在Rt△ABC中,∠C=90°,AC=5,AB=13,那么BC=,该直角三角形的面积为。
3.假设直角三角形的两直角边之比为3:4,斜边长为20㎝,那么斜边上的高为。
拓展提高1.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,那.么正方形A,B,C,D的面积之和为_______cm2C2.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,假设AB=8cm,BC=10cm,求EC的长.。
1.1 探索勾股定理(1)一、课前预习1、正方形面积的计算公式,边长为5时,面积为多少?2、三角形两边分别是2,5第三边是c ,求第三边的取值范围.3、直角三角形两直角边为3、4求则第三边斜边的取值范围,斜边与这两条直角边的长度之间还有什么关系?二、新课学习 1、观察下面两幅图:2、填表:A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积)左图 右图(3)你是怎样得到正方形C 的面积的? 【小结】求面积常用方法: ____________________________(4)你能发现各图中三个正方形的面积之间有何关系吗?【结论】:以_______三角形两_______边为边长的小正方形的面积的和,等于以______边为边长的正方形的面积.AB CC BA思考:(1)若直角三角形两直角边长分别为a 、b ,斜边长为c ,则你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?★【勾股定理】如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么_________________ 即_______三角形两_____边的______和等于斜边的_______. 几何语言:∵在△ABC 中,∠____=900∴____2+____2=____2三、典型例题及练习:例1、如图所示,一棵大树在一次强烈台风中于离地面9m 处折断倒下,树顶落在离树根12m 处. 大树在折断之前高多少? 解:∵在△ABC 中,∠____ =900 ∴____2+____2=____2 即92 +122=AB 2∴AB 2=____ ∴AB =____∴大树在折断之前高 。
【跟踪练习】:1、如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.弦股勾ACBabc2、求图形中未知正方形的面积:3、若△ABC 中,∠C =90°,(1)若a =5,b =12,则c =________;(2)若a =6,c =10,则b =________;(3)若a ∶b =3∶4,c =10,则a =________,b =________.4.如图,阴影部分是一个半圆,则阴影部分的面积为多少?5.底边长6cm ,底边上的高为4cm 的等腰三角形的腰长为多少?6.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和是_________cm 2.1.1 探索勾股定理(2)一、课前复习:1、勾股定理:直角三角形_________________________ 几何语言:在△ABC 中,∵∠____ =900∴____2+____2=____22、在直角三角形ABC 中, ∠C =900,BC =12,CA =5,AB = ______.3、 如果直角三角形的一条直角边长为40,斜边长为41,那么另一条直角边的长为______.?2251002572577cmDACB二、典型例题:例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?例2、受台风麦莎影响,一棵高18m 的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?(提示:方程思想)三、课堂练习:1.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木板的长为多少?2.我方侦查员小王在距离东西向公路400米处侦察,发现一辆敌方汽车在公路上疾驶,他赶紧拿出红外测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?6米5000m4000mC B A500m400m C B A“路”4m3m3、一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?4.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ). A .30cm 2 B .130cm 2 C .120cm 2 D .60cm 25、轮船从海中岛A 出发,先向北航行9km ,又往西航行9km ,由于遇到冰山,只好又向南航行4km ,再向西航行6km ,再折向北航行2km ,最后又向西航行9km ,到达目的地B ,求AB 两地间的距离.6、如图学校有一块长方形花铺,有极少数人为了避开 拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅 少走了 步路(假设2步为1米),却踩伤了花 草.7、一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?A BOCD3米9km AB9km 4km6km9km 2km8、△ABC中,∠C=900,AC=6,BC=8,沿AD折叠,使C点与AB边上的E点重合,求CD的长。
课题:1.1探索勾股定理 (1)【教学目标】(1) 经历“探索—发现—猜想—证明”的过程,进一步发展学生的推理能力.(2)掌握勾股定理,并能运用它解决一些实际问题1、课前练习:1、三角形的三个内角的比为1:2:3, 则这个三角形是____________ 三角形.2、一个三角形的其中两边为5和8 , 则第三边x 的取值范围是_______________3、等腰三角形的其中两边为5和1, 则这个三角形的周长为___________4、已知a = 3, b = 4, 则a 2 + b 2=______, ( a + b ) 2=________。
5、如果a 2 = 25, 则 a = _____2课前预习:(阅读书本P 1—5页)(1) 直角三角形三边有什么关系?你是怎样得到的? (2)勾股定理的内容?勾、股各是什么?【知识点一】出示投影(课本 P3 图1一2 1--3)并回答:1、观察图1一2中的左上图,正方形A 中有 个小方格,即A 的面积为个 面积单位。
正方形 B 中有 个小方格.即B 的面积为 个面积单位。
正方形 C 中有 个小方格,即C 的面积为 个面积单位。
2、你是怎样得出上面结果的?3、图 l 一2中,A 、B 、C 之间的面积之间有什么关系?_______________4、图1一 3中,A 、B 、C 之间有什么关系?【练习一】1、右图中字母所代表的正方形的面积,A=_____________B=______________【知识点二】小结:以直角三角形两直角边为边的正方形面积_____,等于以_____为边的正方形面积。
勾股定理: 直角三角边的________的平方和等于______的平方。
也就是说:如果直角三角形的两直角边为a 、b ,斜边为c 。
那么a 2+____=______【练习二】2、已知在Rt △ABC 中,∠C=90°,a=6 ,b =8 ,则c 2=__________a3、若一个直角三角形的的两条直角边长分别为3、4,以第三边的长向外作正方形,则这个正方形的面积是( )A 、25B 、49C 、 7D 、25或74、 已知在Rt △ABC 中,∠C=90°。
第一章勾股定理1.探索勾股定理(一)在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7,BC=4,请你研究这个直角三角形的斜边AB的长的平方是否等于42+72?测验评价等级:A B C ,我对测验结果(满意、一般、不满意)参考答案(1)边长的平方即以此边长为边的正方形的面积,故可通过面积验证.分别以这个直角三角形的三边为边向外做正方形,如右图:AC =4,BC =3,S 正方形ABED =S 正方形FCGH -4S Rt △ABC=(3+4)2-4×21×3×4=72-24=25即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2(2)如图(图见题干中图)S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×21×4×7=121-56=65=42+722.探索勾股定理(二)下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.①图乙和图丙中(1)(2)(3)是否为正方形?为什么?②图中(1)(2)(3)的面积分别是多少?③图中(1)(2)的面积之和是多少?④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?测验评价等级:A B C,我对测验结果(满意、一般、不满意)参考答案①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a为边长的正方形,(2)是以b为边长的正方形,(3)的四条边长都是c,且每个角都是直角,所以(3)是以c为边长的正方形.②图中(1)的面积为a2,(2)的面积为b2,(3)的面积为c2.③图中(1)(2)面积之和为a2+b2.④图中(1)(2)面积之和等于(3)的面积.因为图乙、图丙都是以a+b为边长的正方形,它们面积相等,(1)(2)的面积之和与(3)的面积都等于(a+b)2减去四个Rt△ABC的面积.由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.2.探索勾股定理(二)班级:________ 姓名:________1.填空题(1)某养殖厂有一个长2米、宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.(2)有两艘渔船同时离开某港口去捕鱼,其中一艘以16海里/时的速度向东南方向航行,另一艘以12海里/时的速度向东北方向航行,它们离开港口一个半小时后相距海里.(3)如图1:隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50 m,CB=40 m,那么A、B两点间的距离是_________.图12.已知一个等腰三角形的底边和腰的长分别为12 cm和10 cm,求这个三角形的面积.3.在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm(1)求这个三角形的斜边AB的长和斜边上的高CD的长.(2)求斜边被分成的两部分AD和BD的长.4.如图2:要修建一个育苗棚,棚高h=1.8 m,棚宽a=2.4 m,棚的长为12 m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图3,已知长方形ABCD中AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.测验评价结果:_____________;对自己想说的一句话是:______________________.参考答案1.(1)2.5 (2)30 (3)30米2.如图:等边△ABC 中BC =12 cm ,AB =AC =10 cm作AD ⊥BC ,垂足为D ,则D 为BC 中点,BD =CD =6 cm 在Rt △ABD 中,AD 2=AB 2-BD 2=102-62=64 ∴AD =8 cm ∴S △ABD =21BC ·AD =21×12×8=48(cm 2)3.解:(1)∵△ABC 中,∠C =90°,AC =2.1 cm ,BC =2.8 cm ∴AB 2=AC 2+BC 2=2.12+2.82=12.25 ∴AB =3.5 cm ∵S △ABC =21AC ·BC =21AB ·CD∴AC ·BC =AB ·CD ∴CD =ABBC AC ⋅=5.38.21.2⨯=1.68(cm)(2)在Rt △ACD 中,由勾股定理得: AD 2+CD 2=AC 2∴AD 2=AC 2-CD 2=2.12-1.682 =(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.21×0.21∴AD =2×3×0.21=1.26(cm)∴BD =AB -AD =3.5-1.26=2.24(cm)4.解:在直角三角形中,由勾股定理可得:直角三角形的斜边长为3 m,所以矩形塑料薄膜的面积是:3×12=36(m 2)5.解:根据题意得:Rt △ADE ≌Rt △AEF∴∠AFE =90°,AF =10 cm,EF =DE设CE =x cm ,则DE =EF =CD -CE =8-x 在Rt △ABF 中由勾股定理得: AB 2+BF 2=AF 2,即82+BF 2=102, ∴BF =6 cm∴CF =BC -BF =10-6=4(cm)在Rt △ECF 中由勾股定理可得: EF 2=CE 2+CF 2,即(8-x )2=x 2+42 ∴64-16x +x 2=x 2+16 ∴x =3(cm),即CE =3 cm参考例题[例1]如下图所示,△ABC 中,AB =15 cm ,AC =24 cm ,∠A =60°,求BC 的长.分析:△ABC 是一般三角形,若要求出BC 的长,只能将BC 置于一个直角三角形中. 解:过点C 作CD ⊥AB 于点D 在Rt △ACD 中,∠A =60° ∠ACD =90°-60°=30° AD =21AC =12(cm)CD 2=AC 2-AD 2=242-122=432, DB =AB -AD =15-12=3. 在Rt △BCD 中,BC 2=DB 2+CD 2=32+432=441BC =21 cm.评注:本题不是直角三角形,而要解答它必须构造出直角三角形,用勾股定理来解. [例2]如下图,A 、B 两点都与平面镜相距4米,且A 、B 两点相距6米,一束光线由A 射向平面镜反射之后恰巧经过B 点.求B 点到入射点的距离.分析:此题要用到勾股定理,全等三角形,轴对称及物理上的光的反射的知识.解:作出B 点关于CD 的对称点B ′,连结AB ′,交CD 于点O ,则O 点就是光的入射点.因为B ′D =DB .所以B ′D =AC .∠B ′DO =∠OCA =90°, ∠B ′=∠CAO所以△B ′DO ≌△ACO (SSS ) 则OC =OD =21AB =21×6=3米.连结OB ,在Rt △ODB 中,OD 2+BD 2=OB 2 所以OB 2=32+42=52,即OB =5(米).所以点B到入射点的距离为5米.评注:这是以光的反射为背景的一道综合题,涉及到许多几何知识,由此可见,数学是学习物理的基础.。
1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应为米.2.如图1-1-1,小张为测量校园内池塘A,B两点的距离,他在池塘边选定一点C,使∠ABC=90°,并测得AC长26m,BC长24m,则A,B两点间的距离为m.3.如图1-1-2,阴影部分是一个半圆,则阴影部分的面积为.(π不取近似值)4.底边长为16cm,底边上的高为6cm的等腰三角形的腰长为cm.5.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距km.提高训练6.一个长为10m为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m,梯子的顶端下滑2m后,底端滑动m.7.如图1-1-3所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积的和是cm2.8.已知Rt△ABC中,∠C=90°,若14=+ba cm,10=c cm,则Rt△ABC的面积为().(A)24cm2(B)36cm2(C)48cm2(D)60cm29.如图1-1-4,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是().(A)321SSS>+(B)321SSS=+(C)321SSS<+(D)无法确定10.暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝. 他们登陆后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅走1km就找到了宝藏,则登陆点到埋宝藏点的直线距离为km.知识拓展12.如图1-1-7,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.BAE5米3米31.斜边为cm 17,一条直角边长为cm 15的直角三角形的面积是( )(A) 60 (B) 30 (C) 90 (D) 120 2. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )64 3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )(A )25 (B )14(C )7 (D )7或25 4. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______.5. 直角三角形的三边长为连续偶数,则其周长为 .6. 如图1-1-8为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.提高训练7. 如图1-1-9,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.8. 如图1-1-10,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积.9.伽菲尔德(Garfield ,1881年任美国第20届总统)利用两个全等的三角形拼成如图图形,Rt Rt ABC CDE △≌△,90B D ∠=∠=,且B C D ,,三点共线,证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.知识拓展10.如图,已知长方形ABCD 中AB =8 cm,BC =10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.12. 已知,如图1-1-22,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90积。
第一章勾股定理1.1.1 探索勾股定理(一)学习目标:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
学习过程:一、自主学习画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
(勾3,股4,弦5)。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42_____52,52+122_____132,那么就有_____2+_____2=_____2。
(用勾、股、弦填空)对于任意的直角三角形也有这个性质吗?勾股定理内容文字表述:几何表述:二、交流展示例1、已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:⑴准备多个三角形模型,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S△+S小正=S大正即4×21×+﹝﹞2=c2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷勾股定理的证明方法,达300余种。
这个古老而精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=_____________右边S=_____________左边和右边面积相等,即_________________________化简可得_______________________三、合作探究bbbccccaabbbaaccaabcc1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则⑴c= 。
1.1 探索勾股定理(1)【学习目标】了解勾股定理的探索过程,掌握勾股定理. 【基础知识演练】1.在△ABC 中,若∠C =90°,则它的三边满足关系式a 2+b 2=c 2. 在此关系式中,涉及到三个量,利用方程的思想,可“知二求一”. (1)若a =3,b =4,则c =_________; (2)若 c =10,b =6,则a =_________;(3)若a ∶b =3∶4,c =20,则a =_________,b =_________. 2.已知等腰ABC ∆的腰AB =AC =10cm ,底边BC=12cm,则A∠的平分线的长是 cm.3.如图,在△ABC 中,∠C=900,AD 平分∠CAB ,AD=10cm ,AC=8cm ,那么D 点到直线AB 的距离是 cm. 4.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.5.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A.25B.14C.7D.7或256.若线段a ,b ,c 能组成直角三角形,则它们的长度之比可能是( ) A.2∶3∶4 B.3∶4∶6 C.5∶12∶13 D.4∶6∶77.在Rt △ABC 中,∠B =9O°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且a =12,b =13,求c .D C BA8.请你取两个同样的直角三角板,并按如图所示摆放.(1)连结AE ,请你判断△ACE 和四边形ABDE 的形状.(2)设AB =CD =a ,BC =DE =b ,AC =CE =c ,请用两种不同的方法求四边形ABDE 的面积. (3)由(2)你能得到什么结论?DC B AE【思维技能整合】9.如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,那么这个直角三角形的面积是 cm 2.10.如图,分别以直角△ABC 的三边AB 、BC 、CA 为直径向外作半圆,设直线AB 左边阴影部分面积为S 1,右边阴影部分面积为S 2,则( ) A .S 1 =S 2 B .S 1 <S 2 C .S 1>S 2 D .无法确定11.图中的螺旋形由一系列直角三角形组成,则以第n 个三角形的斜边长为边长的正方形的面积为 .12.请你作一个直角三角形ABC ,使它的两条直角边AB =6 cm,AC =8 cm.(1)请你先测量斜边BC 的长.(2)你能用其他方法探索这个直角三角形斜边的长吗?这个直角三角形的三边长有什么关系吗?(3)若使AB =AC =3 cm ,请你探索这个直角三角形的三边长有什么关系?A A A A O01231111【发散创新尝试】13.有一根70 cm 的木棒,要放在长、宽、高分别是50 cm 、40 cm 、30 cm 的木箱中,能放进去吗?请说明理由.【回顾体会联想】14.直角三角形三边之间有怎样的关系?生:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a ,b, c 的关系是 .即直角三角形两直角边的平方和等于 的平方.参考答案1. (1) 5.(2) 8.(3) 12,16 2.8 3.6 4.4 5.D 6.C 7.5 8.(1)∵△ABC ≌△CDE ,∴∠ACB =∠DEC ,而∠DCE +∠DEC =90°,∴∠ACB +∠DCE =90°,∴∠ACE =90°, ∴△ACE 为直角三角形.又∵∠ABC -90°=∠EDC , ∴四边形ABDE 为直角梯形. (2)方法一:S 梯形=21(AB +DE )·(BC +CD )=21(a +b )(a +b )=21(a +b )2.方法二:S 梯形=S △ABC +S △ECD +S △ACE =21ab +21ab +21c ·c =ab +21c 2.(3)∵S 梯形相等,∴21(a +b )2=ab +21c 2,∴a 2+b 2=c 2.9.30 10.A 11.n+112.(1)10 cm (2)AB2+AC2=BC2,另参考课本方法(3)AB2+AC2=BC2,探索方法同(2) 13.由下图可得,AA′=30 cm,A′B′=50 cm,B′C′=40 cm.△A′B′C′,△AA′C′都为直角三角形.由勾股定理,得A′C′2=A′B′2+B′C′2.在Rt△AA′C′中.AC′最长,则AC′2=AA′2+A′B′2+B′C′2=302+402+502=5000>702.故70 cm的棒能放入长、宽、高分别为50 cm,40 cm,30 cm的大箱中.14.a2+b2=c2,斜边.。