9,12,求最大正方形 E 的面积.
知
探
索
新
知
解:设另两个正方形中大的为M,小的为N,
由勾股定理和正方形的面积公式,
得E = M + N ,
而M = A + B ,N = C + D ,
∴ E = A + B + C + D
= 122 + 162 + 92 + 122 = 625.
知
二 利用勾股定理进行计算
例1:分别以直角三角形三边为边长的正方形的面积如下
图,问另外一个正方形的面积.
81
∟
625
A
∟
400
144
B
225
225
规律:以直角三角形两直角边为边长的正方形的面积
和等于以斜边长的正方形面积。
探
索
新
例2:如图,图中所有的三角形都是直
角三角形,四边形都是正方形.已知正方
形 A,B,C,D 的边长分别为12,16,
你是如何得到呢?
探
索
新
知
思考:等腰直角三角形的三边之间有什么关系?
斜边的平方等于两直
a
b
c
角边的平方和.
c2=a2+b2
你能说一形有上述性质,其他的直角三角形也有这
个性质吗?
如图,每个小方格的面积均为1,
请分别算出图中正方形A,B,C,
A' , B' , C' 的面积,看看能得出
解:∵在Rt△ADC中,AD=12,AC=13,
∴由勾股定理,得CD2=AC2-AD2=132-122=52,
∵CD=5.BC=14,