1.1探索勾股定理(一)
- 格式:doc
- 大小:715.50 KB
- 文档页数:3
1.1 探索勾股定理(1)一、课前预习1、正方形面积的计算公式,边长为5时,面积为多少?2、三角形两边分别是2,5第三边是c ,求第三边的取值范围.3、直角三角形两直角边为3、4求则第三边斜边的取值范围,斜边与这两条直角边的长度之间还有什么关系?二、新课学习 1、观察下面两幅图:2、填表:A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积)左图 右图(3)你是怎样得到正方形C 的面积的? 【小结】求面积常用方法: ____________________________(4)你能发现各图中三个正方形的面积之间有何关系吗?【结论】:以_______三角形两_______边为边长的小正方形的面积的和,等于以______边为边长的正方形的面积.AB CC BA思考:(1)若直角三角形两直角边长分别为a 、b ,斜边长为c ,则你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?★【勾股定理】如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么_________________ 即_______三角形两_____边的______和等于斜边的_______. 几何语言:∵在△ABC 中,∠____=900∴____2+____2=____2三、典型例题及练习:例1、如图所示,一棵大树在一次强烈台风中于离地面9m 处折断倒下,树顶落在离树根12m 处. 大树在折断之前高多少? 解:∵在△ABC 中,∠____ =900 ∴____2+____2=____2 即92 +122=AB 2∴AB 2=____ ∴AB =____∴大树在折断之前高 。
【跟踪练习】:1、如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.弦股勾ACBabc2、求图形中未知正方形的面积:3、若△ABC 中,∠C =90°,(1)若a =5,b =12,则c =________;(2)若a =6,c =10,则b =________;(3)若a ∶b =3∶4,c =10,则a =________,b =________.4.如图,阴影部分是一个半圆,则阴影部分的面积为多少?5.底边长6cm ,底边上的高为4cm 的等腰三角形的腰长为多少?6.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和是_________cm 2.1.1 探索勾股定理(2)一、课前复习:1、勾股定理:直角三角形_________________________ 几何语言:在△ABC 中,∵∠____ =900∴____2+____2=____22、在直角三角形ABC 中, ∠C =900,BC =12,CA =5,AB = ______.3、 如果直角三角形的一条直角边长为40,斜边长为41,那么另一条直角边的长为______.?2251002572577cmDACB二、典型例题:例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?例2、受台风麦莎影响,一棵高18m 的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?(提示:方程思想)三、课堂练习:1.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木板的长为多少?2.我方侦查员小王在距离东西向公路400米处侦察,发现一辆敌方汽车在公路上疾驶,他赶紧拿出红外测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?6米5000m4000mC B A500m400m C B A“路”4m3m3、一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?4.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ). A .30cm 2 B .130cm 2 C .120cm 2 D .60cm 25、轮船从海中岛A 出发,先向北航行9km ,又往西航行9km ,由于遇到冰山,只好又向南航行4km ,再向西航行6km ,再折向北航行2km ,最后又向西航行9km ,到达目的地B ,求AB 两地间的距离.6、如图学校有一块长方形花铺,有极少数人为了避开 拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅 少走了 步路(假设2步为1米),却踩伤了花 草.7、一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?A BOCD3米9km AB9km 4km6km9km 2km8、△ABC中,∠C=900,AC=6,BC=8,沿AD折叠,使C点与AB边上的E点重合,求CD的长。
课题:1.1探索勾股定理 (1)【教学目标】(1) 经历“探索—发现—猜想—证明”的过程,进一步发展学生的推理能力.(2)掌握勾股定理,并能运用它解决一些实际问题1、课前练习:1、三角形的三个内角的比为1:2:3, 则这个三角形是____________ 三角形.2、一个三角形的其中两边为5和8 , 则第三边x 的取值范围是_______________3、等腰三角形的其中两边为5和1, 则这个三角形的周长为___________4、已知a = 3, b = 4, 则a 2 + b 2=______, ( a + b ) 2=________。
5、如果a 2 = 25, 则 a = _____2课前预习:(阅读书本P 1—5页)(1) 直角三角形三边有什么关系?你是怎样得到的? (2)勾股定理的内容?勾、股各是什么?【知识点一】出示投影(课本 P3 图1一2 1--3)并回答:1、观察图1一2中的左上图,正方形A 中有 个小方格,即A 的面积为个 面积单位。
正方形 B 中有 个小方格.即B 的面积为 个面积单位。
正方形 C 中有 个小方格,即C 的面积为 个面积单位。
2、你是怎样得出上面结果的?3、图 l 一2中,A 、B 、C 之间的面积之间有什么关系?_______________4、图1一 3中,A 、B 、C 之间有什么关系?【练习一】1、右图中字母所代表的正方形的面积,A=_____________B=______________【知识点二】小结:以直角三角形两直角边为边的正方形面积_____,等于以_____为边的正方形面积。
勾股定理: 直角三角边的________的平方和等于______的平方。
也就是说:如果直角三角形的两直角边为a 、b ,斜边为c 。
那么a 2+____=______【练习二】2、已知在Rt △ABC 中,∠C=90°,a=6 ,b =8 ,则c 2=__________a3、若一个直角三角形的的两条直角边长分别为3、4,以第三边的长向外作正方形,则这个正方形的面积是( )A 、25B 、49C 、 7D 、25或74、 已知在Rt △ABC 中,∠C=90°。
“三六五”课堂教学模式导学案
年级学科组总课时数主备教师审查人时间
§1.1探索勾股定理(1)
一、学习目标
1、经历用测量的方法探索勾股定理及用数格子的方法简单的验证勾股定理的过程,提高合情
推理的能力,体会数形结合的思想。
(难点)
2、掌握勾股定理,并能运用勾股定理解决一些简单的实际问题。
是本节的重点和难点。
二、自学感知
自学课本第2—4页解答下面的问题:
1、在纸上作出一个直角三角形,分别测量它们的三条边,看看三边长的平方之间有什么关系?
换一个直角三角形试一试此关系还成立吗?
2、如果直角三角形两直角边分别为a,b斜边为c,那么a2+ = 。
即直角三角形两直角
边的和等于斜边的。
3、我国古代把直角三角形中较短的直角边称为,较长的直角边称为,斜边称
为。
4、如图(1)所示,求出直角三角形未知边的长度。
9
12
(1)
5、如图(2)所示,阴影部分是一个正方形,求此正方形的面积。
(2)
三、小组合作
1、如图,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断之前有多高?
B 12米 C
2、如图,直角三角形三边的平方分别是多少,你能用它们验证勾股定理吗?你是如何计算的?与同伴交流。
四、展
示风
采
400 225
A
1、求下图中字母所代表的正方形的面积。
2、如图,求等腰△ABC的面积。
5
B
3、小明妈妈买了一部29英寸(74厘米)的电视机。
小明量了电视机的屏幕后,发现屏幕只有
58厘米长和46厘米宽,他觉得一定是售货员搞错了。
你同意他的想法吗?你能解释这是为
什么吗?
4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干个图
形,使得它们的面积之和恰好等于最大的正方形面积,尝试给出两种以上的方案。
五、小结
通过本节课的学习谈谈自己的收获和体会。
六、达标检测
1、已知直角三角形的两条直角边分别是3和4,则斜边长为。
2、在直角三角形中,一条直角边长为5,斜边长为13,则另一条直角边长为。
3、如图,在一块平地上,张大爷家屋前9米处有一颗大树,在一次强风中,这棵大树从离地
面6米处折断倒下,量得倒下部分的长是10米,出门在外的张大爷担心自己的房屋被倒下的大树
砸倒,大树倒下时能砸到张大爷的房子吗?请你通过计算,分析后给出正确的回答()
A、一定不会
B、可能会
C、一定会
D、以上答案都不对
4、如图,一架2.5米长的梯子斜靠在一竖直的墙上,这时,梯
底距墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的底端将滑出多少米?
七、学(教)后反思与错题集锦
班级姓名完成时间小组评价个人评价。