考研高数:两个收敛准则求极限
- 格式:doc
- 大小:165.50 KB
- 文档页数:5
函数极限的性质和收敛准则函数极限是在数学分析中一个重要的概念,它包含了许多重要的性质和收敛准则。
在本文中,我们将讨论函数极限的性质和收敛准则,并详细介绍每个性质和准则的定义和证明。
一、函数极限的性质1. 唯一性性质:如果一个函数存在极限,那么它的极限是唯一的。
也就是说,如果f(x)存在极限L,则该极限是唯一的。
这个性质可以通过反证法来证明。
假设存在两个不同的数L1和L2都是f(x)的极限,即limx→a f(x) = L1和limx→a f(x) = L2、由于L1≠L2,根据极限的定义可以找到一个ε>0,使得对于任意的δ>0,当0<,x-a,<δ时,必有,f(x)-L1,<ε和,f(x)-L2,<ε,这导致矛盾。
2. 有界性质:如果一个函数存在极限,那么它在极限点的一些邻域内是有界的。
也就是说,如果limx→a f(x)存在,则存在一个正数M,使得在a的一些邻域内,有,f(x),≤M。
这个性质可以通过极限的定义和邻域的定义来证明。
3.保号性质:如果一个函数存在极限,并且极限为L,则存在ε>0,使得当0<,x-a,<δ时,有f(x)>0或f(x)<0。
也就是说,在足够接近极限点时,函数的取值保持正号或负号。
这个性质可以通过极限的定义和邻域的定义来证明。
4. 夹逼性质:如果函数f(x)满足对于任意的x∈(a-d,a+d),有g(x)≤f(x)≤h(x),且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x)也存在,且limx→a f(x) = L。
二、函数极限的收敛准则1. Cauchy收敛准则:如果一个函数f(x)满足对于任意的ε>0,存在一个正数δ>0,使得当0<,x-a,<δ,以及0<,y-a,<δ时,有,f(x)-f(y),<ε。
那么函数f(x)在x→a时收敛。
考研数学求数列极限的方法总结有关考研数学求数列极限的方法总结总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它可以提升我们发现问题的能力,不如静下心来好好写写总结吧。
以下是店铺整理的有关考研数学求数列极限的方法总结,希望对大家有所帮助。
考研高数求极限的方法指南1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
考研高等数学重要基础知识点单调有界收敛准则及其应用
2023考研高等数学重要基础知识点:单调有界收敛准则及其应用_中公教育网
一、单调有界准则
单调且有界的数列必收敛。
理解:单调递增且有上界的级数必收敛;具有下界的单调递减序列必定收敛。
题型:已知数列极限的递推关系,试图证明数列极限的存在性,并求出这个极限。
总结:
1)根据递推公式证明数列极限存在的基本思想:首先证明数列是单调有界的,从而得到数列极限的存在性;然后同时取方程两边的极限,得到方程,求出极限值。
2)证明数列单调有界的主要方法:
①先设出极限再求出极限值,对比极限值与数列前三项的大小关系确定证明数列单调递增还是单调递减、有上界还是有下界,以及上界或下界各是多少;
②证明时,先证有界性,再证单调性;
③为了更好地运用递推公式,证明过程中一般会用到数学归纳法。
以上根据具体问题给大家展示了利用单调有界收敛准则证明数列极限存在的具体分析思路和解题步骤,希望大家多总结方法,从题目中总结解题技巧和书写规范。
考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。
通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。
求函数极限的方法有很多种,以下是几种常见的方法。
对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。
例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。
当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。
例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。
洛必达法则是求未定式极限的重要方法。
如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。
例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。
对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。
通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。
例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。
夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。
如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。
例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。
2016考研数学:求数列极限的方法总结
极限是考研数学高数第一章的内容,在考研数学中占有一定的比例,一般有几分到二十分左右的分值。
极限一般有数列极限和函数极限,求数列极限和函数极限的方法很多,有些方法也可以使二者联系起来。
下面中公考研的数学教研老师总结了几种求数列极限的方法,后续会给出求函数极限的方法总结,希望能帮助同学们掌握求极限的方法。
1、定义法
2、利用奇子列和偶子列的极限
一般在选择题中出现,不常考。
3.夹逼准则(两面夹法则)
4、单调有界定理
单调递增有上界,数列极限存在;单调递减有下界,数列极限存在。
5.海涅定理(归结原则)
6、定积分的定义
7、利用级数收敛的必要条件
以上就是几种常用的求数列极限的方法,希望同学们务必重点掌握,在做题的过程中能熟练运用。
高等数学级数求极限方法级数求极限是高等数学教学中的重要内容,它是分析函数和数量的变化规律的重要工具,也是连续函数和累加函数研究的重要方法。
级数求极限不仅是数学基础理论,而且在工程中也有重要应用。
本文将介绍级数求极限的概念、性质、方法和应用。
1.数求极限的概念和性质级数求极限的基本概念是:若序列${a_n}$的每一项$a_n$都收敛于某一实数$a$,则称为该序列$a_n$收敛于$a$,记作$lim_{ntoinfty}a_n=a$。
这时,$a$叫做级数$a_n$的极限,用$lim$符号表示。
级数求极限的性质有两种:绝对和条件收敛。
若一序列$a_n$的每一项的绝对值的极限为0,则称该序列绝对收敛;若一序列$a_n$在一定条件下的极限存在,则称该序列条件收敛。
2.数求极限的方法(1)先求出序列的前n项的和,然后判断它的极限。
(2)采用数学归纳法证明序列的极限存在。
(3)采用特殊序列,通过分析对比不同序列,来证明某一序列的极限存在。
(4)利用解析法,采用分析数学方法求出极限。
3.数求极限在工程领域的应用(1)微分方程的解,如求解伯努利方程的级数解和特殊解;(2)积分方程的解,如求解积分方程的解级数;(3)统计学中实用公式的求解,如极大似然比等;(4)医学中常见问题的解决,如病人身体变化曲线的估计;(5)工程计算中的特殊问题,如力学模型的建立;(6)地理测量中的公式应用,如经纬度的计算。
综上所述,级数求极限是高等数学中的重要内容,它是连续函数和累加函数研究的重要方法,也是工程中的重要应用。
本文重点介绍了级数求极限的概念、性质、方法和应用,旨在为使用级数求极限方法的读者提供参考和帮助。
第二讲 极限部分【考试要求】1.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.2.掌握极限的性质及四则运算法则.3.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.4.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.考点:极限的定义1.数列极限的定义及存在的充要条件{}{}{}0,,.,lim ;,.,n n n n n n n n N n N x a a x n x a x a a x x a N x a x εεεεεε→∞>>-<→∞=-<(1)定义中的是衡量必须且只需可以任意足够小;(2)定义中的正整数如果对于任意给定的总存在正整数当时,恒有成立则称常数是数列在时的极限,或称数列收敛于记为如果不存在这样的常数则称数列发散与无限接近的一个标准所以是保证不等式成立的分界点,它随的给定而选定;(3)数列注:定义1{}{},n n x 是否有极限如果有极限其极限值为多少,跟的前有限项无关.{}1,0,,, ;0,,, 1,,.n n n n n x a N N n N x x a N N n N x a c c m N N N n N x a mεεεε++++⎡⎤⎣⎦>∈>-<>∈>-<∈∈>-<例下列关于数列的极限是的定义哪些是对的,哪些是错的?说明理由.(1)对于任意给定的存在当时,有无穷多项使不等式成立(2)对于任意给定的存在当时,不等式成立其中为某个正常数;(3)对于任意给定的存在当时,不等式成立2lim 0,lim ,n n n n u a u a →∞→∞=≠=⎡⎤⎣⎦例若证明并举例说明反之不对.{}{}{}n n n x x x 在数列中任意抽取无限多项并保持这些项在原来数列中的先后次序,这样得到的一个数列称为原数列的子数列(或子列).定义2{}{}{},,.,n n n x a a x x 如果数列收敛于那么它的任一子列也收敛且极限也是若数列的某子列发散或某两个子列极限值不相等则数列发散.定理1注:221lim lim lim .n n n n n n x A x x A -→∞→∞→∞=⇔==定理2{}()()()()2212213313312015,____.lim ,lim lim lim lim ,lim lim ,lim lim lim lim ,lim n n n n n n n n n n n n n n n n n n n n n n n n n x A x a x x aB x x a x aC x a x x aD x x a x a -→∞→∞→∞-→∞→∞→∞-→∞→∞→∞-→∞→∞→∞⎡⎤⎣⎦============例2,数三设是数列则下列不正确的是若则若则若则若则()11lim ____.nn n n -→∞+⎛⎫=⎡⎤ ⎪⎣⎦⎝⎭例32.函数极限的定义()()()()()()000000,0,0,lim .lim .x x x x x x x f x a a f x x x f x a f x x f x f x x εδδε→→>><-<-<→=如果对于任意给定的总存在当满足时,恒有成立则称常数是在时的极限,记为在处的极限是否存在与在处是否有定义无关定义3注:()()()()()000lim lim .lim lim lim .x x x x x x x x x x x x x x f x f x f x A f x f x A -+-+-+→→→→→→→=⇔==类似可定义和时的和单侧极限定理1()()1,040,0,:0.1,0x x f x x x f x x x -<⎧⎪==→⎡⎤⎨⎣⎦⎪+>⎩例设证明当时的极限不存在()()()0,0,lim .x X x x X f x a a f x x f x a εε→∞>>>-<→∞=如果对于任意给定的总存在当满足时,恒有成立,则称常数是在时的极限,记为定义3()()()()()lim lim .lim lim lim .x x x x x x x f x f x f x A f x f x A →+∞→-∞→∞→+∞→-∞→+∞→-∞=⇔==类似可定义和时的和单侧极限定理225____,____lim arctan .2x ax xa b x bx x π→∞+===-⎡⎤⎣⎦-例当时,有()()011110112sin lim lim lim ,0arctan arctan ,arctan 211limarctan limarctan 2.1x xx x x x x xe e e xe e x x ππ∞+∞-∞→-→→→→→+∞→∞+=--∞∞=-需要分别考察左右极限的情形有(即何时使型型 用定理与定理)(1)分段函数的分段点处(包含带有绝对值的情形);如;(2);如和;(3)如和;总结:()()()()12116112 0 x x x e x A B C D --→⎡⎤⎣⎦-∞∞例当时,函数的极限____.等于等于为不存在但不为考点:极限的性质 1.数列极限的性质{},.n x 如果数列收敛那么它的极限唯一性质1(唯一性){}{},.n n x x 如果数列收敛那么数列一定有界性质2(有界性)lim 00,,, 00.lim ,,,n n n n n n x a N n N x x a b b N n N x b b →∞→∞=><>><=><>><如果(或)那么存在正整数当时有()如果()那么存在正整数当时都有().性质3(局部保号性)注:2.函数极限的性质()lim ,.f x 如果存在那么这极限唯一性质1(唯一性)()()0000lim ,.,x x f x x x f x x x x x x →+→→→→∞如果存在那么当时,有界可以改成其他方式如,等,结论也对应改之即可, 下面的保号性也一样.性质2(局部有界性)注:()()()()000lim 00,00.lim ,.x x x x f x a x x f x f x a b b x x f x b b →→=><→><=><→><如果(或)那么当时,()如果(或)那么当时,()性质3(局部保号性)注:()()()()()()()()31110,lim 2,1____.1x f x f f x x x A B C D →''===⎡⎤⎣⎦-例设且则在处不取极值取极大值取极小值是否取极值无法确定3.函数与数列极限的关系(归结原则、海涅定理)()(){}{}{}{}()(){}{}{}{}{}{}()00000lim ,,lim lim .lim lim lim ,lim .n n x x x n n n x x x n n n n n n n n n x x f x x x x x f x f x f x x x f x x x y f x f y f x →→∞→∞→→∞→∞→∞→∞→→∞=如果存在则对任一收敛于但又不等于的数列(或)其所对应的函数值数列必收敛,且若存在某收敛于数列使不存在或存在某两个收敛于数列和使和不相等则不存在注:012limsin x x→⎡⎤⎣⎦例证明不存在.ln 3lim .n n n →∞⎡⎤⎣⎦例求考点:无穷小与无穷大 1.无穷小的定义()()0000,,f x x x f x x x x x x x x +→→→→→∞如果在时极限为零,那么称为时的无穷小,当然,这里的可以是其他情形如等.定义1(1)有限个无穷小的和仍是无穷小;(2)有限个无穷小的积仍是无穷小;(3)有界函数与无穷小的乘积仍是无穷小.注:()()lim ,.f x A f x A αα=⇔=+其中是无穷小定理1(无穷小与极限的关系)()323112007lim sin cos ____.2x x x x x x x →+∞+++=⎡⎤⎣⎦+例(数三)2.无穷小的比较lim 0,lim 0,0lim0,2lim 0,3lim 1,4lim 0,.k o c c k αβαββαβααββααββααβαββαα==≠===≠==≠设且(1)若则称是比的高阶无穷小,记为();()若则称与是同阶无穷小;()若则称与是等阶无穷小,记为;()若则称是的阶无穷小12,3,,.αααββααββγαγ等价无穷小具有以下性质()(自反性);()(对称性)若则;()(传递性)若则注:()()()()()()()()()()()()()222232235235222,.0;2.x o x o x o x o x o x o x x o x o x o x o x o x o x o x →⎡⎤⎣⎦±=±=⋅=⋅==例判断下列等式是否正确并说明理由()(1);(2)(3);(4);(5)()()()()()()()()()3232,0.x xf x x A f x x B f x x C f x x D f x x =+-→⎡⎤⎣⎦例设则当时,有____与是等价无穷小与同价但非等价无穷小是比高阶的无穷小是比低阶的无穷小3.无穷大的定义()()()00,00,0,,M X x x x X x f x f x M f x x x x δδ>><-<>>→→∞如果对于任意给定的正数(不论它多么大)总存在(或)对适合(或)的一切对应的函数值总满足那么称是(或)时的无穷大.定义2ln !,,0, 1.nn n nn a n n a αβαβ→∞∀>>时,有其中注:()()()()(),1,10,.f x f x f x f x f x ≠在自变量的同一变化过程中如果为无穷大那么为无穷小;反之,如果为无穷小,且那么为无穷大定理2(无穷小与无穷小的关系)4.无穷大与无界的关系()00.x x x x f x M x x x x →→∞⇒⎧>∀⎨→→∞⇒⎩要求或的一切这是无穷大对成立要求或的某一这是无界()114sin 0,10x x x+→⎡⎤⎣⎦例证明函数在内无界,但时这函数不是无穷大.()5cos ,y x x x =-∞+∞→+∞⎡⎤⎣⎦例函数在内是否有界?这函数是否为时的无穷大?考点:极限的四则运算法则()()()()()()()()()()()()()()()lim ,lim ,lim lim lim lim lim lim lim lim 0.lim f x A g x B f x g x f x g x A B f x g x f x g x A B f x f x A B g x g x B ==±=±=±⎡⎤⎣⎦=⋅=⋅⎡⎤⎣⎦==≠如果那么数列对应有以上运算法则.定理1注:()()()()()()()()()()()()()()()()1,,1lim ,lim lim 2lim lim lim 3lim lim lim 4lim lim lim f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x ⎡⎤⎣⎦±⎡⎤⎣⎦±⎡⎤⎣⎦⋅⎡⎤⎣⎦⋅⎡⎤⎣⎦例下列陈述中哪些是对的哪些是错的?()如果存在但不存在,那么不存在;()如果和都不存在,那么不存在;()如果存在,但不存在,那么不存在;()如果和都不存在,那么不存在.32212lim .53x x x x →-⎡⎤⎣⎦-+例求)3223233103342 31lim2lim.09753133lim4lim.11x xx xx x xx x xx xx x→→∞→+∞→-∞++⎡⎤⎣⎦-∞+-⎛⎫⋅∞∞-∞-⎪--⎝⎭例求()(型);()(型)()(0型);()(型)()()()()()()()()4:1lim,lim0,lim0,2lim0,lim0,lim0.f xA g x f xg xf xA f x g xg x===⎡⎤⎣⎦=≠==例证明()若且则()若且则考点:极限存在准则1.夹逼准则{}{}{}{}10,,2lim lim .lim .n n n n n n n n n n n n n x y z N n N x y z x z a y y a →∞→∞→∞∃>>≤≤===如果数列,,满足以下条件:()从某项起,即当时有;()则数列有极限,且函数对应有以上夹逼准则.注:01:lim 1.x x x +→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦例1证明222111:lim 1.2n n n n n n πππ→∞⎛⎫+++=⎡⎤ ⎪⎣⎦+++⎝⎭例2证明12,,,,0.n m m n a a a a ++≥⎡⎤⎣⎦例3求其中2.单调有界准则{}{},lim ,lim n n n n n n x x x x →∞→∞若数列单调增加且有上界,则极限存在;若数列单调减少且有下界,则极限存在.函数对应有以上单调有界准则.注:{}11112,1,2,.2n n n n x x x n x x +⎛⎫==+=⎡⎤ ⎪⎣⎦⎝⎭例4设(),证明数列有极限{}11342,1,2,.1n n n nx x x n x x ++===⎡⎤⎣⎦+例5设(),证明:数列有极限{}116,sin 1,2,,.n n n x x xn x π+<<==⎡⎤⎣⎦例设0()证明:数列有极限考点:用等价无穷小求极限1.常用的等价无穷小()()()21.0sin arcsin tan arctan ln 1111cos ,1ln ,11.22.,,,0.x x m n m x xx x x x e x x x a x a x x o x x x m n x ααβαβααβα→---+-=±→±<时,;若即是的高阶无穷小则特别地时,()+2.等价无穷小替换原则111111,,lim lim lim lim .ββββααββαααα===若则30sin 1lim .3x x x x→⎡⎤⎣⎦+例求极限tan 302lim ____.x xx e e x→-=⎡⎤⎣⎦例20ln cos 3lim ____.x x x→=⎡⎤⎣⎦例4x →⎡⎤⎣⎦例求极限215lim ln 1.x x x x →∞⎡⎤⎛⎫-+⎡⎤ ⎪⎣⎦⎢⎥⎝⎭⎣⎦例求极限()2032sin 36lim .tan xxx x x →+-⎡⎤⎣⎦例求极限考点:幂指函数的极限()()()()()()()()000000,lim ,,lim lim .x x x x x x y f g x y f u u g x g x u y f u u u f g x f g x f u →→→====⎡⎤⎣⎦⎡⎤====⎡⎤⎣⎦⎢⎥⎣⎦设是由与复合而成若而函数在连续则定理1)1limsin .n n n →∞⎡⎤⎣⎦例求()()()()()()lim lim 0,lim ,lim lim .v x v x b u x a v x b u x u x a =>===若则定理2(幂指函数极限运算法则)()()()20cos ,02,lim ____.2,0x x x x f x f x a x π-→⎧<<⎪==⎡⎤⎨⎣⎦⎪=⎩例设则1000lim ____; lim ____;1 lim 1____.x xx x x x x x x +→+∞→∞→∞=∞=⎡⎤⎣⎦⎛⎫+= ⎪⎝⎭例3(1)(0型)(2)(型)(3)(1型)tan4lim____.xx+→=⎡⎤⎣⎦例()()()()()()()1tan251,,lim,lim1,lim,,0lim sin.3v x Ax x x xxx xu x v x u x e A v x u xa b ca b c xπ→→→→∞==-⎡⎤⎡⎤⎣⎦⎣⎦⎛⎫++>⎪⎝⎭例设证明:其中并用此公式计算()和。
求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111n a a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞.解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎥⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!nn n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112()122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n =)极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim nn x l →∞=存在,对①式两边取极限得:l解得:l =l (舍负);∴lim n n x →∞.4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim nn c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++; ∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++. 注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用.5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()b aJ f x dx =⎰.例7.求:()()11lim !2!n n n n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n =112lim (1)(1)(1)n n n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦ 11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12lim lim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sin sinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫ ⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()1110n nxx n n e e e e n n=→∞→∞--'===-.例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭.解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1)n n n n n n n n n n n n n -------+-=+≥+; 由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1)lim(1)lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n -----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim n n nxl y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim n n nxl y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈.解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p pp n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nkn k n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n ++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1limlim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >.解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<,∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵10011()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()()1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n n x f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x S l +→∞→∞=+=(存在); 对式子:12(1)2n n n x x x ++=+,两边同时取极限:2(1)2l l l+=+,∴l =l =lim n n x →∞.例15.证明:111lim(1ln )23n n n →∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数).证:设1111ln 23n a n n=++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n ---;对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim n n a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用. 例17.求:2lim (arctanarctan )1n a a n n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, ]1a an n+上应用拉格朗日中值定理, 得:21()()(), [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明, 若lim n n x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nn ααα++⋅⋅⋅+也为无穷小数列. 推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim n n x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12limn n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略. 例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211limn n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211limn n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim1()x f x g x →=,且当n →∞时, 0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n →∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数).解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n →∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==; ∴2231lim (1)nn i i a n →∞=+=∏21exp()3a .注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,]2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, ]22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim n n x c →∞=,则c 是222a x x =+在1[0, ]2a+的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =[0, )x ∈+∞且在[0, )+∞上有:()1f x '=≤<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==解得:lim n n x →∞. 本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞. (2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-,从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n n n ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn nn a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫= ⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()111111011111111120101n n n A P P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭ ()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-.因为11α-<,所以lim(1)0n n α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ=,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn n n n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-,由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim lim n n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。
数列极限的收敛准则及其计算一、单调有界准则:若数列{an}单调递增且有上界,则该数列收敛。
若数列{an}单调递减且有下界,则该数列收敛。
计算方法:1. 若数列{an}单调递增且有上界,可以用逐项逼近的方法计算极限。
这种方法是将该数列中的数从前往后不断逼近极限值。
2. 若数列{an}单调递减且有下界,也可以用逐项逼近的方法进行计算,只不过逼近的方向是从后往前。
二、夹逼准则:若对于数列{an}、{bn}和{cn},满足an≤bn≤cn,且lim(an)=lim(cn)=L,则该数列{bn}的极限也为L。
计算方法:夹逼准则通常用于求解一些特殊的数列极限,特别是那些无法使用逐项逼近的方法计算的情况。
可以通过找到两个逐项逼近的数列来确定原数列的极限值。
三、柯西收敛准则:柯西收敛准则是描述了数列中相邻两项之差的极限与数列本身的极限之间的关系。
若对于数列{an},对于任意正数ε,存在正整数N,使得当m≥n≥N 时,an - am,< ε,则该数列收敛。
计算方法:要判断数列是否满足柯西收敛准则,需要找到一个递增函数N(n),使得对于大于等于N(n)的n值,数列中相邻两项之差的绝对值小于一些正数ε。
四、收敛无穷小的刻画:若数列{an}的极限为0,则该数列是无穷小数列。
计算方法:要判断数列是否为无穷小数列,只需要计算该数列的极限,若极限为0,则该数列是无穷小数列。
综上所述,数列极限的收敛准则是判断数列是否收敛并计算其极限的一组重要准则,其中包括了单调有界准则、夹逼准则、柯西收敛准则和收敛无穷小的刻画。
不同的数列可以运用不同的准则进行判断和计算,选择适当的方法可以更快地求解数列的极限值。
高数大一下知识点总结收敛高等数学是大学理工类学生所必修的一门重要基础课程,它是提高数学素养、培养逻辑思维能力的重要手段。
在大一下学期,我们学习了一系列涉及到收敛的知识点,下面就对这些知识进行总结。
一、收敛的概念与判定在高等数学中,收敛是一个重要的概念,它在数列、函数以及级数等数学对象中都有着重要的应用。
所谓收敛,就是当自变量趋于某一特定值时,函数或数列的值趋近于一个确定的常数。
我们可以通过极限的概念来判定一个函数或数列是否收敛。
对于数列来说,如果数列的极限存在且唯一,则该数列收敛;对于函数来说,如果函数的极限值存在且唯一,则函数收敛。
二、数列的收敛性判定准则1. 单调有界准则:如果一个数列既单调递增,又有上界(下界),则它收敛。
2. 夹逼准则:如果对于数列的每一项,总存在两个数列,一个上界一个下界,它们都收敛于同一个极限,那么原数列也收敛于该极限。
3. 敛散性的判定:如果一个数列没有极限,或者它的极限值为无穷大或无穷小,则该数列发散。
三、函数的收敛性判定准则1. 函数极限存在性:如果一个函数在某一点的左极限和右极限都存在且相等,则该函数在该点处收敛。
2. 柯西收敛准则:如果对于任意正数ε,存在一个正数δ,使得当x满足0 < |x - x0| < δ时,对应的函数值满足|f(x) - L| < ε,那么称函数f(x)在x0处收敛于L。
四、级数的收敛性判定准则级数是由数列的和所构成的数列,在判断级数的收敛性时,我们可以使用以下准则:1. 正项级数收敛准则:如果一个级数的各项都为非负数且单调递减,则该级数收敛。
2. 比值判别法:对于一个级数,如果存在正数q,使得当n趋于无穷大时,|an+1/an| < q,那么级数收敛;如果 |an+1/an| > 1,那么级数发散;如果 |an+1/an| = 1,那么该判别法不确定。
3. 积分判别法:对于一个正项级数,如果存在一个正函数f(x),使得当n趋于无穷大时,an = f(n)关于x的定积分收敛,则级数收敛;如果an = f(n)关于x的定积分发散,则级数发散。
收敛级数的四则运算公式收敛级数是数学中一个重要的概念,它描述了一种数列的和是否趋于一个有限的值。
在计算中,我们经常会遇到对收敛级数进行四则运算的情况,即对两个收敛级数进行加减乘除运算。
下面我们就来介绍一下收敛级数的四则运算规则。
一、加法运算:对于两个收敛级数∑an和∑bn,如果它们都收敛,则它们的和级数∑(an+bn)也收敛,并且有如下性质:(1)如果∑an和∑bn都绝对收敛,则∑(an+bn)也绝对收敛;(2)如果∑an和∑bn都条件收敛,则∑(an+bn)也条件收敛。
例如,考虑两个收敛级数∑(1/n^2)和∑(1/n^3),它们分别是著名的调和级数和。
通过计算可以得知,这两个级数都收敛。
那么它们的和级数∑(1/n^2+1/n^3)是否收敛呢?我们来看一下。
对于级数∑(1/n^2+1/n^3),我们可以将其拆分为两个级数∑1/n^2和∑1/n^3的和级数。
根据加法运算的性质,只需证明∑1/n^2和∑1/n^3都收敛即可。
对于∑1/n^2,我们知道它是一个收敛的级数,其和为π^2/6。
对于∑1/n^3,我们可以通过积分的方法证明其收敛,具体过程略去。
所以根据加法运算的性质,我们可以得知∑(1/n^2+1/n^3)也收敛。
二、减法运算:对于两个收敛级数∑an和∑bn,如果它们都收敛,则它们的差级数∑(an-bn)也收敛,并且有如下性质:(1)如果∑an和∑bn都绝对收敛,则∑(an-bn)也绝对收敛;(2)如果∑an和∑bn都条件收敛,则∑(an-bn)也条件收敛。
例如,考虑两个收敛级数∑(1/n^2)和∑(1/n^3),我们已经知道它们都收敛。
那么它们的差级数∑(1/n^2-1/n^3)是否收敛呢?我们来看一下。
对于级数∑(1/n^2-1/n^3),我们可以将其拆分为两个级数∑1/n^2和∑1/n^3的差级数。
根据减法运算的性质,只需证明∑1/n^2和∑1/n^3都收敛即可。
对于∑1/n^2,我们已经知道它是一个收敛的级数,其和为π^2/6。
第一讲函数、极限与连续一、考试要求1.理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。
2.了解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极限存在与左、右极限之间的关系。
6.掌握(了解)极限的性质,掌握四则运算法则。
7.掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
11.掌握(会)用洛必达法则求未定式极限的方法。
二、内容提要 1、函数(1)函数的概念: y=f(x),重点:要求会建立函数关系.(2)复合函数: y=f(u), u=ϕϕ()[()]x y f x ⇒=,重点:确定复合关系并会求复合函数的定义域.(3)分段函数: 注意,)}(),(min{)},(),(max{,)(x g x f x g x f x f 为分段函数. (4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。
(5)函数的特性:单调性、有界性、奇偶性和周期性 *注:1、可导奇(偶)函数的导函数为偶(奇)函数。
特别:若)(x f 为偶函数且)0(f '存在,则0)0(='f 2、若)(x f 为偶函数,则⎰xdt t f 0)(为奇函数;若)(x f 为奇函数,则⎰xadt t f )(为偶函数;3、可导周期函数的导函数为周期函数。
特别:设)(x f 以T 为周期且)(0x f '存在,则)()(00x f T x f '=+'。
考研高数:两个收敛准则求极限凯程教育:凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;凯程考研的价值观口号:凯旋归来,前程万里;信念:让每个学员都有好最好的归宿;使命:完善全新的教育模式,做中国最专业的考研辅导机构;激情:永不言弃,乐观向上;敬业:以专业的态度做非凡的事业;服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
如何选择考研辅导班:在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。
判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。
还要深入了解教师的学术背景、资料著述成就、辅导成就等。
凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。
而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。
在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。
高数求极限的方法总结
求极限的方法总结如下:
1. 代入法:将极限中的变量代入函数中进行计算,看是否能得到确定的值。
2. 夹逼定理:当函数夹在两个其他已知函数之间时,如果这两个函数的极限相等,则函数的极限也相等。
3. 幂指函数的极限:根据函数的幂指形式,分别考虑底数和指数的极限。
4. 分子分母除以最高幂次项:将分子和分母都除以最高幂次项,可以简化计算,并得到函数的极限。
5. 极限的四则运算法则:对于四则运算中的极限,可以将它们分别计算求得极限,然后应用四则运算法则得到最终结果。
6. 奇偶函数的极限:奇函数的极限可表示为对称轴两侧的函数极限之和,偶函数的极限可表示为对称轴两侧的函数极限相等。
7. 自然对数的极限:自然对数的极限是1。
8. e的极限:e是一个常数,其极限是e。
9. 无穷小量的极限:无穷小量的极限为0。
10. 级数的极限:当级数的通项趋于0,且满足柯西准则时,级数收敛。
请注意,在应用这些方法时,需要注意条件的合理性和适用范围,并进行必要的证明。
考研数学极限有哪些运算方法和适用情况考研数学极限有哪些运算方法和适用情况极限是整个高等数学学习的工具,我们在考研数学的时候,要掌握好运算方法和适用情况。
店铺为大家精心准备了考研数学极限的计算方法指南,欢迎大家前来阅读。
考研数学极限七种运算方法及适用情况基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。
极限的定义在考试大纲中明确要求是理解,理解的意思并不是会背诵定义内容,而是能够领会定义内容背后的所蕴含的含义,正确理解所代表的任意小以及代表的距离。
除定义本身以外,极限的趋近状态也要注意区分,对于函数来说有六种趋近状态:各自的含义要非常清楚,而数列只有一种趋近状态,虽然没有指明,但是数列里边的隐含之意为。
极限的计算则需要首先掌握考研数学要考到的七种基本方法,知道七种方法适用的情况。
第一种是四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的;第二种是等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换);第三种是洛必达法则,适用于及型未定式,在使用的过程中需要注意一下几点:1、洛必达法则必须结合等价无穷小使用;2、使用一次整理一次;3、其他类型未定式需要转化成及型才可以使用洛必达法则等;第四种是泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出;第五种是夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于个分式之和的数列极限问题,通过放缩分母来达到出现不等关系的目的;第六种是定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,通过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题;第七种方法是适用于数列极限的单调有界性定理,难点在于如何确定证明方向,一般单调有界性定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法证明有界性,做差的办法证明单调性。
考研高数:两个收敛准则求极限
凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观口号:凯旋归来,前程万里;
信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学
员引路。
如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。
判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。
还要深入了解教师的学术背景、资料著述成就、辅导成就等。
凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。
而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。
在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。
在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。
对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。
最好的办法是直接和凯程老师详细沟通一下就清楚了。
建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。
例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。
有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。
凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。
此外,最好还要看一下他们的营业执照。