第十章数据离散程度的度量(回顾与总结)课件
- 格式:ppt
- 大小:177.00 KB
- 文档页数:7
10.1数据的离散程度
教学目标:
1.通过实例,知道描述一组数据的分布时,除关心它的集中趋势外,还需要分析数据的波动大小.
2.了解数据的离散程度的意义.
教学过程:
【情境导入】自动化生产线上,两台数控机床同时生产直径为40.00毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,结果如下(单位:毫米).
通过计算甲、乙生产零件的直径的平均数都是40毫米,是不是这就能说明这两床机床生产的质量一样好呢?为什么?
【自主学习】课本第92、93页,了解离散程度的定义和意义
1.数据的波动范围用表示,可以通过统计图来分析.
2.下表显示的是上海2001年2月下旬和2002年同期的每日最高气温:
试对这两段时间的气温进行比较.两个时段的气温情况没有什么差异吗?请同学们根据上表提供的数据,绘制出相应的折线图.
【合作交流】小组内讨论自主学习内容,总结出分析数据的基本思路和绘制折线统计图的方法及应注意的事项.
【教师点拨】:
1.对于一组数据,仅仅了解它的集中趋势是不够的,还需要了解这些数据的波动范围和偏离平均数的差异程度.
2.绘制折线统计图的时候要注意横轴、纵轴分别表示的意义,统计图的名称,单位长度,描点是否准确等方面.
【课堂练习】
课本习题、练习题
【当堂检测】《配套练习册》
【课堂小结和评价】。
数据的离散程度在统计学中,我们经常会关注数据的分布情况和离散程度。
数据的离散程度是指数据值在分布中的散布程度,也就是数据点相对于平均值的偏离程度。
偏离程度的度量方法常见的度量偏离程度的方法有四个:方差、标准差、极差和平均绝对偏差。
方差方差是偏离程度的最常用指标之一。
它计算对于均值的平均偏离的平方。
我们可以用以下公式来计算方差:$$ s^2 = \\frac{1}{n-1} \\sum_{i=1}^{n} (X_i - \\bar{X})^2 $$其中,n是样本大小,X i是第i个数据点,$\\bar{X}$是样本的平均值。
标准差标准差是方差的平方根。
它测量了数据点对于均值的平均偏离,并提供了一种标准化的度量。
我们可以用以下公式来计算标准差:$$ s = \\sqrt{\\frac{1}{n-1} \\sum_{i=1}^{n} (X_i - \\bar{X})^2} $$极差极差是样本数据中最大值与最小值的差。
它提供了数据集中数据较为分散的程度。
我们可以用以下公式来计算极差:r=X max−X min其中,X max是最大值,X min是最小值。
平均绝对偏差平均绝对偏差是测量样本与均值之间平均差异的度量方法,计算了数据点与平均值的绝对偏差的平均值。
我们可以用以下公式来计算平均绝对偏差:$$ MAD = \\frac{1}{n} \\sum_{i=1}^{n} |X_i - \\bar{X}| $$应用离散程度是数据分析和数据处理中非常重要的概念。
例如,在金融领域中,我们可以使用离散程度来衡量投资组合的风险,进而作出更好的投资决策。
在生物医学研究中,研究者们可以使用离散程度来分析药物试验数据及对疾病的影响。
在市场营销中,离散程度可以用来研究客户对于一款产品的反馈,进而制定更有针对性的市场营销策略。
总结数据的离散程度是衡量数据分布状态的重要指标。
使用方差、标准差、极差以及平均绝对偏差这些量化离散程度的方法,可以帮助我们分析数据分布的特征,做出更加准确的结论。