统计学原理第二章:数据的描述(3)
- 格式:ppt
- 大小:1.31 MB
- 文档页数:75
统计学原理公式第二章数据描述1、组距=上限―下限2、简单平均数: x=Σx/n3、加权平均数:x=Σxf/Σf4、全距: R=xmax-xmin5、方差和标准差:方差是将各个变量值和其均值离差平方的平均数。
其计算公式:22未分组的计算公式:σ=Σ(x-x)/n22分组的计算公式:σ=Σ(x-x)f/Σf 样本标准差则是方差的平方根:21/2未分组的计算公式:s=[Σ(x-x)/(n-1)]2 1/2分组的计算公式:s=[Σ(x-x)f/(Σf-1)]1/2σ=[Σ(x-x)/n] 6、离散系数:总体数据的离散系数:Vσ=σ/x 样本数据的离散系数:Vs=s/x 10、标准分数:标准分数也称标准化值或Z分数,它是变量值与其平均数的离差除以标准差后的值,用以测定某一个数据在该组数据的相对位置。
其计算公式为:Zi=(xi-x)/s标准分数的最大的用途是可以把两组数组中的两个不同均值、不同标准差的数据进行对比,以判断它们在各组中的位置。
第三章参数估计1、统计量的标准误差:(样本误差)(1)在重复抽样时;样本标准误差:σx=σ/n 或σx=s/n 样本的比例误差可表示为:1/21/2σp=[π(1-π)/n] 或σp=[p(1-p)/n] (2)不重复抽样时: 22σx=σ/n×(N-n/N-1) 2σp=p(1-p)/n×(N-n/N-1)2、估计总体均值时样本量的确定,在重复抽样的条件下:222n= Zσ/E3、估计总体比例时样本量的确定,在重复抽样的条件下:22n=Z×p(1-p)/E 4、(1)在大样本情况下,样本均值的抽样分布服从正态分布,因此采用正态分布的检验统计量,当总体方差已知时,总体均值检验统计量为:Z=(x-μ)/( σ/n)(2)当总体方差未知时,可以用样本方差来代替,此时总体均值检验的统计量为:Z=(x-μ)/( s/n) 5、小样本的检验:在小样本(n<30)情况下,检验时,首先假定总体均值服从正态分布。
第一章绪论1,教育统计学是运用数理统计学的原理来研究教育问题的一门应用科学。
2,教育统计学分为描述统计、推断统计和实验设计三类。
(1)描述统计:计算集中量(算术平均数、中位数、众数、加权算术平均数、几何平均数、调和平均数)来反映集中趋势;计算差异量(全距、四分位距、百分位距、平均差、标准差、差异系数)反映离散程度;计算偏态量及峰态量反映分布形态;计算相关量(积差相关系数、等级、点二列、二列、四分、C相关系数、肯德尔和谐系数、多系列相关系数)反映一致性程度。
(2)推断统计包括总体参数估计和假设检验两部分。
3,随机现象三个特性:一,一次试验有多种可能的结果,其所有结果是已知的;二,试验之前不能预料那一种结果会出现;三,在相同条件下可以重复试验。
随机事件:随机现象的每一种结果。
随机变量:把能表示随机现象各种结果的变量称之4,总体:是我们研究的具有某种共同特性的个体的总和。
样本数目大于30称为大样本,小于等于30称为小样本。
第二章数据的初步整理1,教统资料来源有经常性资料和专题性资料。
专题性资料包括(1)教育调查。
按调查方法分为现情调查、回顾调查和追踪调查;按调查范围分全面调查和非全面调查(抽样调查和典型调查)。
(2)教育实验。
分为单组实验(指对同一实验对象先后实施两种实验处理)、等组实验(指在甲乙两组条件基本相同的情况下,对之实行不同的实验处理)和轮组实验(指在实验组和对照组分别进行两种实验处理,并且每种处理各重复一次,也即每个或多个单组实验的联合)2,数据的分类。
按来源分为点计数据和度量数据;按随机变量取值情况分为间断型随机变量(取值个数有限、独立的、两个单位之间不能再划分细小单位、一般用整数表示,如优劣程度、品德爱好打分)和连续性随机变量(个数无限、单位之间可以再划分、可以用小数表示如身高体重、完成作业的时间等)。
3,频数分布表制作步骤:求全距;决定组数和组距;决定组限;登记频数。
4,用累计频数表示的频数分布表称为累计频数分布表。
根本统计方法第一章 概论1. 总体〔Population 〕:根据研究目确实定的同质对象的全体〔集合〕;样本〔Sample 〕:从总体中随机抽取的局部具有代表性的研究对象。
2. 参数〔Parameter 〕:反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量〔Statistic 〕:反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3. 统计资料分类:定量〔计量〕资料、定性〔计数〕资料、等级资料。
第二章 计量资料统计描述1. 集中趋势:均数〔算术、几何〕、中位数、众数2. 离散趋势:极差、四分位间距〔QR =P 75-P 25〕、标准差〔或方差〕、变异系数〔CV 〕3. 正态分布特征:①X 轴上方关于X =μ对称的钟形曲线;②X =μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。
4. 医学参考值范围的制定方法:正态近似法:/2X u S α±;百分位数法:P 2.5-P 97.5。
第三章 总体均数估计和假设检验1. 抽样误差〔Sampling Error 〕:由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可防止,产生的根本原因是生物个体的变异性。
2. 均数的标准误〔Standard error of Mean, SEM 〕:样本均数的标准差,计算公式:/X σσ=3. 降低抽样误差的途径有:①通过增加样本含量n ;②通过设计减少S 。
4. t 分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t 值越分散,t 分布的峰部越矮而尾部翘得越高;③当ν逼近∞,X S 逼近X σ, t 分布逼近u 分布,故标准正态分布是t 分布的特例。
统计学第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。
3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。
(4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。
统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。
2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。
洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。
3. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
《统计学原理》教学大纲前言统计学是一门应用性很强的学科,是收集、整理和分析统计数据的方法科学,其目的是探索数据内在的数量规律性,以达到对客观事物的科学认识。
现在《统计学》课程已成为经济管理类专业的一门核心课程,通过本课程应使学生理解统计原理,掌握统计的基本方法和技能,增强学生搜集、整理和分析数据信息的能力,培养学生对信息量化分析的素养和技能。
教学目的要求和内容绪论[目的要求]1.掌握统计学的研究对象和学科特色2.理解统计学的研究方法3.了解统计学的产生和发展[教学内容]1.统计数据与统计学2.统计学的产生和发展3.统计学与其他学科的关系第一章、统计数据的搜集与整理[目的要求]1.掌握数据的计量尺度与数据的类型,2.初步掌握统计调查的基本方法,理解数据搜集、分类汇总的基本方法,3.掌握次数分布表与图的制作方法。
[教学内容]1.数据的计量与类型2.统计数据的搜集3.统计数据的整理第二章、数据分布特征的描述[目的要求]1.掌握集中趋势各测度值的计算方法、特点和应用场合;2.掌握离中趋势各测度值的计算方法、特点和应用场合。
[教学内容]1.绝对数与相对数2.集中趋势的描述3.离散程度的描述第三章、概率与概率分布[目的要求]1.了解掌握推断统计的基础知识2.掌握随机变量的概率分布[教学内容]1.概率基础2.随机变量及其分布第四章、时间数列分析[目的要求]1.掌握时间数列的水平、速度分析方法;2. 了解时间数列长期趋势、季节变动分析以及循环变动分析的基本方法。
[教学内容]1.时间数列分析基础2.长期趋势分析3.季节变动分析4.循环波动与不规则波动分析第五章、指数[目的要求]1.理解指数的概念及其分类;2.掌握综合指数和平均指数的编制方法;3.理解指数体系的概念,掌握指数因素分析方法。
[教学内容]1.指数的性质与分类2.加权指数3.指数体系4.几种常用的重要指数第六章、参数估计[目的要求]1.了解掌握统计推断的基本原理,抽样分析的重要概念2.掌握参数估计的基本方法以及参数估计量的评价标准3.介绍几种重要的区间估计[教学内容]1.统计推断的基本概念2.参数估计基本方法3.总体均值和总体比例的估计4.两个总体均值及两个总体比例之差的估计第七章、假设检验[目的要求]1.理解假设检验的基本原理;2.掌握参数显著性检验的基本步骤;3.掌握常用的参数显著性检验的方法;4.理解假设检验和区间估计的联系。
数据统计分析方法一、引言数据统计分析方法是指在收集到一定数量的数据后,通过运用统计学原理和方法,对数据进行整理、分析和解释,从中获取有价值的信息和结论的一种方法。
数据统计分析方法在各个领域都有广泛的应用,如市场调研、医学研究、社会调查等。
本文将介绍常用的数据统计分析方法,包括描述统计分析、推断统计分析和回归分析。
二、描述统计分析1. 数据的搜集与整理描述统计分析的第一步是收集数据,并进行整理。
数据可以通过问卷调查、实验观测、文献资料等方式获得。
在整理数据时,需要对数据进行分类、排序和编码,以便后续的分析。
2. 数据的汇总与展示在描述统计分析中,常用的汇总指标包括平均数、中位数、众数、标准差等。
平均数是所有观察值的总和除以观察值的个数,中位数是将所有观察值按大小排列后的中间值,众数是出现频率最高的观察值。
标准差是观察值与平均数的离散程度的度量。
3. 数据的描述与分析描述统计分析的主要目的是对数据进行描述和解释。
通过对数据的描述,可以了解数据的分布特征、集中趋势和离散程度。
常用的描述方法包括频数分布表、频数分布直方图、累积频数分布图等。
通过对数据的分析,可以得出对数据的解释和结论。
三、推断统计分析1. 抽样方法推断统计分析是在样本数据的基础上对总体进行推断。
为了得到具有代表性的样本数据,需要采用合适的抽样方法。
常用的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
2. 参数估计参数估计是推断统计分析的核心内容之一。
通过样本数据,可以对总体参数进行估计。
常用的参数估计方法包括点估计和区间估计。
点估计是通过样本数据得到总体参数的一个估计值,区间估计是通过样本数据得到总体参数的一个估计区间。
3. 假设检验假设检验是推断统计分析的另一个重要内容。
通过假设检验,可以判断总体参数是否符合某种假设。
常用的假设检验方法包括单样本检验、双样本检验和方差分析等。
在进行假设检验时,需要确定显著性水平和拒绝域。
四、回归分析回归分析是一种用于研究变量之间关系的统计方法。
基本统计方法第一章概论1. 总体(Population):根据研究目的确定的同质对象的全体(集合);样本(Sample):从总体中随机抽取的部分具有代表性的研究对象。
2. 参数(Parameter):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。
第二章计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR=P75-P25)、标准差(或方差)、变异系数(CV)3. 正态分布特征:①X轴上方关于X=μ对称的钟形曲线;②X=μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。
4. 医学参考值范围的制定方法:正态近似法:;百分位数法:P2.5-P97.5。
第三章总体均数估计和假设检验1. 抽样误差(Sampling Error):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可避免,产生的根本原因是生物个体的变异性。
2. 均数的标准误(Standard error of Mean, SEM):样本均数的标准差,计算公式:。
反映样本均数间的离散程度,说明抽样误差的大小。
3. 降低抽样误差的途径有:①通过增加样本含量n;②通过设计减少S。
4. t分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t值越分散,t分布的峰部越矮而尾部翘得越高;③当ν逼近∞,逼近, t分布逼近u分布,故标准正态分布是t分布的特例。
5. 置信区间(Confidence Interval, CI):按预先给定的概率(1-α)确定的包含总体参数的一个范围,计算公式:或。
《统计学原理》教案第一章:统计学概述1.1 统计学的定义解释统计学是研究数据收集、分析、解释和展示的科学。
强调统计学在决策和科学研究中的重要性。
1.2 统计学的应用领域介绍统计学在各个领域的应用,如经济学、生物学、医学、社会科学等。
引导学生思考统计学在解决实际问题中的作用。
1.3 统计学的基本概念介绍数据、样本、总体、变量等基本概念。
解释定量变量和定性变量的区别。
第二章:数据的收集与整理2.1 数据的收集方法介绍调查问卷、实验设计、观察法等数据收集方法。
强调数据收集过程中应考虑的伦理和有效性问题。
2.2 数据的整理与描述介绍数据的整理过程,包括数据清洗、数据排序等。
介绍频数、频率、图表等数据描述方法。
2.3 数据的可视化介绍条形图、折线图、饼图等数据可视化方法。
强调数据可视化在数据理解和交流中的重要性。
第三章:概率与随机变量3.1 概率的基本概念介绍事件的概率、条件概率、独立事件等概念。
解释概率的计算方法和概率论的基本原理。
3.2 随机变量的定义与分类介绍随机变量的概念,包括离散随机变量和连续随机变量。
解释随机变量的期望、方差等统计特性。
3.3 概率分布与概率质量函数介绍概率分布的概念,包括二项分布、正态分布等。
解释概率质量函数的定义和作用。
第四章:统计推断与假设检验4.1 统计推断的基本概念介绍统计推断的目的是根据样本数据推断总体特性。
解释点估计、置信区间、假设检验等概念。
4.2 假设检验的方法与步骤介绍常见的假设检验方法,如t检验、卡方检验、F检验等。
解释假设检验的步骤,包括设定假设、计算统计量、判断结论等。
4.3 置信区间的估计与推断介绍置信区间的概念和计算方法。
强调置信区间在统计推断中的作用和限制。
第五章:回归分析与相关分析5.1 回归分析的基本概念介绍回归分析的目的是研究两个或多个变量之间的关系。
解释线性回归、多元回归等概念。
5.2 线性回归模型的建立与评估介绍线性回归模型的建立过程,包括模型选择、参数估计等。