5、复合函数微分法与隐函数微分法解析
- 格式:ppt
- 大小:494.00 KB
- 文档页数:23
第五节 复合函数微分法与隐函数微分法在一元函数的复合求导中,有所谓的“链式法则”,这一法则可以推广到多元复合函数的情形. 下面分几种情况来讨论.分布图示★ 链式法则(1) ★ 链式法则(2) ★ 链式法则(3)★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 例7 ★ 全微分形式的不变性★ 例 8 ★ 例 9 ★ 例 10 ★ 例 11 ★ 隐函数微分法(1)★ 例12 ★ 例13 ★ 隐函数微分法(2)★ 例14 ★ 例15 ★ 例16★ 例17★ 例18★ 内容小结★ 课堂练习 ★ 习题6-5内容要点一、多元复合函数微分法1.复合函数的中间变量为一元函数的情形设函数),(v u f z =,)(t u u =,)(t v v =构成复合函数)](),([t v t u f z =.dtdvv z dt du u z dt dz ∂∂+∂∂= (5.1) 公式(5.1)中的导数dtdz称为全导数. 2、复合函数的中间变量为多元函数的情形设),,(v u f z =),,(y x u u =),(y x v v =构成复合函数)],,(),,([y x v y x u f z =,xv v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ (5.3) ,yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ (5.4) 3、复合函数的中间变量既有一元也有为多元函数的情形定理3 如果函数),(y x u u =在点),(y x 具有对x 及对y 的偏导数, 函数)(y v v =在点y 可导,函数),(v u f z =在对应点),(v u 具有连续偏导数, 则复合函数)](),,([y v y x u f z =在对应点),(y x 的两个偏导数存在, 且有,xu u z x z ∂∂∂∂=∂∂ (5.7) .dydv v z y u u z y z ∂∂+∂∂∂∂=∂∂ (5.8) 注:这里x z ∂∂与x f ∂∂是不同的,x z ∂∂是把复合函数],),,([y x y x u f z =中的y 看作不变而对x 的偏导数,x f ∂∂是把函数),,(y x u f z =中的u 及y 看作不变而对x 的偏导数. y z ∂∂与yf∂∂也有类似的区别.在多元函数的复合求导中,为了简便起见,常采用以下记号:,),(1u v u f f ∂∂=' ,),(2v v u f f ∂∂='vu v u f f ∂∂∂=''),(212 ,这里下标1表示对第一个变量u 求偏导数,下标2表示对第二个变量v 求偏导数,同理有2211,f f '''' , 等等.二、全微分形式的不变性根据复合函数求导的链式法则,可得到重要的全微分形式不变性. 以二元函数为例,设),(v u f z =, ),(),,(y x v v y x u u ==是可微函数,则由全微分定义和链式法则,有dy y z dx x z dz ∂∂+∂∂=dy y v v z y u u z dx x v v z x u u z ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂= ⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=dy y v dx x v v z dy y u dx x u u z .dv vz du u z ∂∂+∂∂=由此可见,尽管现在的u 、v 是中间变量,但全微分dz 与x 、y 是自变量时的表达式在形式上完全一致. 这个性质称为全微分形式不变性. 适当应用这个性质,会收到很好的效果.三、 隐函数微分法在一元微分学中,我们曾引入了隐函数的概念,并介绍了不经过显化而直接由方程0),(=y x F (5.11)来求它所确定的隐函数的导数的方法. 这里将进一步从理论上阐明隐函数的存在性,并通过多元复合函数求导的链式法则建立隐函数的求导公式,给出一套所谓的“隐式”求导法.定理4 设函数),(y x F 在点),(00y x P 的某一邻域内具有连续的偏导数, 且,0),(00≠y x F y ,0),(00=y x F 则方程0),(=y x F 在点),(00y x P 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数),(x f y = 它满足),(00x f y = 并有.yx F Fdx dy -= (5.12) 定理5 设函数),,(z y x F 在点),,(000z y x P 的某一邻域内有连续的偏导数, 且,0),,(,0),,(000000≠=z y x F z y x F z则方程0),,(=z y x F 在点),,(000z y x P 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数),(y x f z =, 它满足条件),(000y x f z =,并有.,zy zx F F y zF F x z -=∂∂-=∂∂ (5.14)例题选讲多元复合函数微分法例1 (E01) 设,sin t uv z +=而,cos ,t v e u t == 求导数.dtdz 解dt dz tzdt dv v z dt du u z ∂∂+⋅∂∂+⋅∂∂=t t u ve t cos sin +-= t t e t e t t cos sin cos +-=.cos )sin (cos t t t e t +-=例2 (E02) 设,sin v e z u =而,,y x v xy u +== 求x z ∂∂和.yz ∂∂ 解x z ∂∂xvv z x u u z ∂∂⋅∂∂+∂∂⋅∂∂=1c o s s i n ⋅+⋅=v e y v e u u )cos sin (v v y e u +=)],cos()sin([y x y x y e xy +++= y z ∂∂yv v z y u u z ∂∂⋅∂∂+∂∂⋅∂∂=1cos sin ⋅+⋅=v e x v e u u )cos sin (v v x e u +=)].cos()sin([y x y x x e xy +++=例3 求y x y x z 2422)3(++=的偏导数.解 设,322y x u +=,24y x v +=则.v u z = 可得,1-⋅=∂∂v u v u z ,ln u u vz v ⋅=∂∂ ,6x x u =∂∂,2y y u =∂∂,4=∂∂xv2=∂∂y v 则x z ∂∂xvv z x u u z ∂∂∂∂+∂∂∂∂=4ln 61⋅⋅+⋅⋅=-u u x u v v v 12422)3)(24(6-+++=y x y x y x x )3ln()3(4222422y x y x y x ++++ y z ∂∂yv v z y u u z ∂∂∂∂+∂∂∂∂=2ln 21⋅⋅+⋅⋅=-u u y u v v v 12422)3)(24(2-+++=y x y x y x y ).3ln()3(2222422y x y x y x ++++例4 设,sin ,),,(2222y x z e z y x f u z y x ===++ 求xu∂∂和.y u ∂∂ 解x u ∂∂xzz f x f ∂∂∂∂+∂∂=y x ze xe z y x z y x sin 222222222⋅+=++++ ,)sin 21(22422sin 22yx y xe y x x +++=y u ∂∂yzz f y f ∂∂∂∂+∂∂=y x ze ye z y x z y x cos 222222222⋅+=++++ .yx y xe y y x y 2422sin 4)cos sin (2+++=例5 (E03) 设),,(,y x u u xy z ϕ=+= 求.,,222yx zx z x z ∂∂∂∂∂∂∂ 解),,(y x y xu y x z x ϕ+=∂∂+=∂∂ ),,(2222y x x u x u y x x z x x z xx ϕ=∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂).,(1122y x yx ux u y y x z y y x z xy ϕ+=∂∂∂+=⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂例6 设),,(22y x e f z xy-= 其中),(ηξf 有连续的二阶偏导数, 求.,22yz y z ∂∂∂∂解 设,xy e =ξ,22y x -=η则xz ∂∂x f x f ∂∂⋅∂∂+∂∂⋅∂∂=ηηξξξ∂∂=f ye xy η∂∂+f x 2 y x z ∂∂∂2⎪⎪⎭⎫ ⎝⎛∂∂∂∂=ξf ye y xy ⎪⎪⎭⎫⎝⎛∂∂∂∂+ηf x y 2 ξ∂∂=f exyξ∂∂+f xye xy 22ξ∂∂+f xye xy ηξ∂∂∂-f e y xy 222ηξ∂∂∂+f e x xy 222224η∂∂-f xy ξ∂∂+=f xy e xy)1(222ξ∂∂+f xye xy 例7 (E04) 设),,(xyz z y x f w ++= 其中函数f 有二阶连续偏导数,求x w∂∂和zx w ∂∂∂2.解 令,z y x u ++=,xyz v =记,),(1uv u f f ∂∂=',),(212v u v u f f ∂∂∂='' 同理记,2f ',11f '',22f ''. x w ∂∂xvv f x u u f ∂∂⋅∂∂+∂∂⋅∂∂=;21f yz f '+'= z x w ∂∂∂2)(21f yz f z '+'∂∂=;221z f yz f y z f ∂'∂+'+∂'∂= z f ∂'∂1zvv f z u u f ∂∂⋅∂'∂+∂∂⋅∂'∂=11;1211f xy f ''+''= z f ∂'∂2zvv f z u u f ∂∂⋅∂'∂+∂∂⋅∂'∂=22;2221f xy f ''+''= zx w∂∂∂2)(222121211f xyf f yz f y f xy f ''+''+'+''+''=.)(22221211f y f z xy f z x y f '+''+''++''=例8 利用全微分形式不变性解本节的例2.设,sin v e z u = 而,xy u = ,y x v += 求x z 和.y z解 dz )s i n (v e d u =,c o s s i nv d v e v d u e u u+= 因du )(xy d =,xdy ydx +=dv )(y x d +=,dy dx +=代入后归并含dx 及dy 的项,得dz dx v e y v e u u )cos sin (+⋅=,)cos sin (dy v e x v e u u +⋅+即dy yzdx x z ∂∂+∂∂dx y x y x y e xy )]cos()sin([+++=.)]cos()sin([dy y x y x x e xy ++++ 比较上式两边的dx 、dy 的系数,得x z )],cos()sin([y x y x y e xy +++=y z )].cos()sin([y x y x x e xy +++=它们与例2的结果一样.全微分形式的不变性例9 (E05) 利用一阶全微分形式的不变性求函数222z y x xu ++=的偏导数.解du =2222222222)()()(z y x z y x xd dx z y x ++++-++2222222)()222()(z y x zdz ydy xdx x dx z y x ++++-++= .)(22)(2222222z y x xzdzxydy dx x z y ++---+=所以 x u ∂∂,)(2222222z y x x z y ++-+=y u ∂∂,)(22222z y x xy ++-=z u∂∂.)(22222z y x xz ++-=例10 求函数xyyx z -+=1arctan的全微分. 解 设,y x u +=,1xy v -=则,arctan vuz =于是dz dv v z du u z ∂∂+∂∂=du v v u 1)(112⋅+=dv v u vu ⎪⎭⎫⎝⎛-++22)(11).(122udv vdu v u -⋅+= 由,y x u +=,1xy v -=,dy dx du +=),(xdy ydx dv +-=代入上式,得 =dz22)1()(1xy y x -++[)1(xy -)(dy dx +)(y x ++)(xdy ydx +].1122y dyx dx +++=例11 (E06) 已知,02=+--z xy e z e 求x z ∂∂和yz∂∂. 解 ,0)2(=+--z xy e z e d∴,02)(=+---dz e dz xy d e z xydz e z )2(-),(ydx xdy e xy +=- dz .)2()2(dy e xe dx e ye z xyz xy -+-=--故所求偏导数x z∂∂,2-=-z xy e ye y z ∂∂.2-=-z xy e xe隐函数微分法例12 (E07) 验证方程0122=-+y x 在点(0, 1)的某邻域内能唯一确定一个有连续导 数、当0=x 时1=y 的隐函数)(x f y =,求这函数的一阶和二阶导数在0=x 的值.证 令,1),(22-+=y x y x F 则x F ,2x =y F ,2y =)1,0(x F ,0=)1,0(y F 2=,0≠依定理知方程0122=-+y x 在点)1,0(的某领域内能唯一确定一个有连续导数,当0=x 时1=y 的隐函数),(x f y =函数的一阶和二阶导数为dx dy yxF F =,y x -=0=x dx dy ,0= 22dx y d 2y y x y '-=2)(yyx x y --=,13y -=022=x dx y d .1-=例13 求由方程0=+-y x e e xy 所确定的隐函数y 的导数.,0=x dxdydx dy解 此题在第二章第六节采用两边求导的方法做过,这里我们直接用公式求之. 令,y x e e xy F +-=则x F ,x e y -=y F ,ye x +=dxdy y x F F -=,y x e x y e +-=由原方程知0=x 时,,0=y 所以0=x dx dy 00==+-=y x yx e x y e .1=例14 (E08) 求由方程y z z x ln =所确定的隐函数),(y x f z =的偏导数.,yz x z ∂∂∂∂ 解 设,ln ),,(yzz x z y x F -=则,0),,(=z y x F 且.1,1,1222z zx y z y z x z F y y z z y y F z x F +-=⋅--=∂∂=⎪⎪⎭⎫ ⎝⎛--=∂∂=∂∂ 利用隐函数求导公式,得.)(,2z x y z F F y z z x z F F x z z y z x +=-=∂∂+=-=∂∂例15 求由方程a a xyz z (333=-是常数)所确定的隐函数),(y x f z =的偏导数xz ∂∂和.yz ∂∂ 解 令,3),,(33a xyz z z y x F --=则x F ',3yz -=y F ',3xz -=z F '.332xy z -=显然都是连续.所以,当z F 'xy z 332-=0≠时,由隐函数存在定理得x z ∂∂zx F F ''=xy z yz 3332---=,2xy z yz -=y z ∂∂z y F F ''=xy z xz 3332---=.2xyz xz -=例16 (E09) 设,04222=-++z z y x 求 .22x z∂∂ 解 令,4),,(222z z y x z y x F -++=则x F ,2x =z F ,42-=z∴xz ∂∂z x F F -=,2z x -=22x z ∂∂2)2()2(z x z xz -∂∂+-=2)2(2)2(z z xx z --⋅+-=.)2()2(322z x z -+-=注:在实际应用中,求方程所确定的多元函数的偏导数时,不一定非得套公式,尤其在方程中含有抽象函数时,利用求偏导或求微分的过程则更为清楚.例17 设),,(xyz z y x f z ++= 求.,,zy y x x z ∂∂∂∂∂∂ 解 z 看成y x ,的函数对x 求偏导数得x z∂∂⎪⎭⎫ ⎝⎛∂∂+⋅+⎪⎭⎫ ⎝⎛∂∂+⋅=x z xy yz f x z f v u 1x z ∂∂,1vu v u xyf f yzf f --+= 把x 看成y z ,的函数对y 求偏导数得0⎪⎪⎭⎫⎝⎛∂∂+⋅+⎪⎪⎭⎫ ⎝⎛+∂∂⋅=y x yz xz f y x f v u 1y x∂∂,v u v u y z ff x z f f ++= 把y 看成z x ,的函数对z 求偏导数得1⎪⎭⎫ ⎝⎛∂∂+⋅+⎪⎭⎫⎝⎛+∂∂⋅=z y xz xy f z y f v u 1zy ∂∂.1v u vu x z f f xyf f +--=例18 设方程ze z y x =++确定了隐函数),,(y x z z =求.,,22222y zy x z x z ∂∂∂∂∂∂∂解 方程两边分别对x 求偏导和对y 求偏导,得,1xze x z z ∂∂=∂∂+.1x z e y z z ∂∂=∂∂+ 所以,11-=∂∂z e x z .11-=∂∂z e y z 22x z ∂∂⎪⎭⎫ ⎝⎛∂∂∂∂=x z x x z e e z z ∂∂⋅-=2)1(111)1(2-⋅--=z z z e e e .)1(3--=z z e e 同理 22y z∂∂.)1(3--=z z e e课堂练习1.设),(xyz xy x f w ++= 求.,,zw y w x w ∂∂∂∂∂∂ 2.设),sin (sin sin x y F x u -+=其中F 是可微函数, 证明.cos cos cos cos y x x yuy x u ⋅=∂∂+∂∂ 3.设,⎪⎭⎫⎝⎛=z y z x ϕ其中ϕ为可微函数, 求y z y x z x ∂∂+∂∂.。
求微分的方法
微分的方法有多种,以下是常见的微分方法:
1. 基本微分法则:基本微分法则包括常数微分法则、幂函数微分法则、指数函数微分法则、对数函数微分法则、三角函数微分法则、反三角函数微分法则等。
通过应用这些基本微分法则,可以对各种函数进行微分。
2. 链式法则:链式法则是一种用于求复合函数的导数的方法。
如果一个函数是由两个函数复合而成,那么它的导数可以通过链式法则求得。
链式法则的表达式为:如果y = f(g(x)),那么
y关于x的导数可以表示为dy/dx = d(g(x))/dx * df(g(x))/dg(x)。
3. 隐函数微分法:隐函数微分法是一种用于求隐函数的导数的方法。
如果一个函数无法通过常规的函数表达式表示,而是通过一个方程来描述,那么它的导数可以通过隐函数微分法求得。
4. 参数方程微分法:参数方程微分法是一种用于求参数方程所表示的曲线的切线和法线的方法。
通过对参数方程的参数分别求导,可以得到曲线上任意一点的切线和法线的斜率。
5. 一阶线性微分方程法:一阶线性微分方程法是一种用于求解一阶线性微分方程的方法。
通过对微分方程进行变形和积分,可以得到微分方程的解析解。
这些方法并不是全部,还有其他方法,如泰勒展开法、几何微分法等。
具体选择哪种方法取决于问题的性质和要求。