多元复合函数与隐函数微分法知识分享
- 格式:ppt
- 大小:522.50 KB
- 文档页数:22
第九讲 复合函数微分法在一元函数的复合求导中,有所谓的“链式法则”,这一法则可以推广到多元复合函数的情形. 下面分几种情况来讨论.一、 多元复合函数微分法1、复合函数的中间变量为多元函数的情形设),,(v u f z =),,(y x u u =),(y x v v =构成复合函数)],,(),,([y x v y x u f z =则,x v v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ ,yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ 2、复合函数的中间变量为一元函数的情形设函数),(v u f z =,)(t u u =,)(t v v =构成复合函数)](),([t v t u f z =.dt dv v z dt du u z dt dz ∂∂+∂∂= 导数dtdz 称为全导数.3、复合函数的中间变量既有一元也有为多元函数的情形定理3 如果函数),(y x u u =在点),(y x 具有对x 及对y 的偏导数, 函数)(y v v =在点y 可导,函数),(v u f z =在对应点),(v u 具有连续偏导数, 则复合函数)](),,([y v y x u f z =在对应点),(y x 的两个偏导数存在, 且有,x u u z x z ∂∂∂∂=∂∂ .dydv v z y u u z y z ∂∂+∂∂∂∂=∂∂ 在多元函数的复合求导中,为了简便起见,常采用以下记号:,),(1u v u f f ∂∂=' ,),(2v v u f f ∂∂='vu v u f f ∂∂∂=''),(212 , 这里下标1表示对第一个变量u 求偏导数,下标2表示对第二个变量v 求偏导数,同理有2211,f f '''' , 等等. 例1设,sin v e z u =而,,y x v xy u +== 求x z ∂∂和.yz ∂∂ 例2设,sin t uv z +=而,cos ,t v e u t == 求导数.dtdz第十讲 隐函数微分法二、 隐函数微分法在一元微分学中,我们曾引入了隐函数的概念,并介绍了不经过显化而直接由方程0),(=y x F来求它所确定的隐函数的导数的方法. 这里将进一步从理论上阐明隐函数的存在性,并通过多元复合函数求导的链式法则建立隐函数的求导公式,给出一套所谓的“隐式”求导法.定理4 设函数),(y x F 在点),(00y x P 的某一邻域内具有连续的偏导数, 且,0),(00≠y x F y ,0),(00=y x F 则方程0),(=y x F 在点),(00y x P 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数),(x f y = 它满足),(00x f y = 并有.yx F F dx dy -= 定理5 设函数),,(z y x F 在点),,(000z y x P 的某一邻域内有连续的偏导数, 且,0),,(,0),,(000000≠=z y x F z y x F z则方程0),,(=z y x F 在点),,(000z y x P 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数),(y x f z =, 它满足条件),(000y x f z =,并有.,zy z x F F y z F F x z -=∂∂-=∂∂ 例3 求由方程0=+-y x e e xy 所确定的隐函数y 的导数.,0=x dx dy dx dy 例4求由方程y z z x ln =所确定的隐函数),(y x f z =的偏导数.,yz x z ∂∂∂∂ 例5求由方程a a xyz z (333=-是常数)所确定的隐函数),(y x f z =的偏导数x z ∂∂和.y z ∂∂ 例6设,04222=-++z z y x 求 .22x z ∂∂。