多元复合函数的微分法
- 格式:pptx
- 大小:2.76 MB
- 文档页数:27
8.4多元复合函数的微分法在一元函数微分学中,复合函数的链式求导法则是最重要的求导法则之一,它解决了很多比较复杂的函数的求导问题.对于多元函数,也有类似的求导法则.8.4.1多元复合函数的求导法则 1.二元复合函数求导法则与一元复合函数求导相比,二元复合函数的求导问题要复杂的多.对于二元函数),(v u f z =,中间变量u 和v 都可以是x 和y 的二元函数;也可以只是某一个变量t 的函数,还可能中间变量u 和v 分别是不同个数自变量的函数,譬如u 是y x ,的函数,而v 只是x 的函数;等等。
下面讨论二元复合函数的求导法则,对二元以上的多元函数的求导法则可类似推出.定理8.4.1设函数),(v u f z =是v u ,的函数,),(),,(y x v y x u ψϕ==.若),(),,(y x y x ψϕ在点),(y x 处偏导数都存在,),(v u f z =在对应点),(v u 处可微,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 处关于y x ,的两个偏导数都存在,且yv v z y u u z y z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂∂∂⋅∂∂+∂∂⋅∂∂=∂∂, (8-1) 我们借助于复合函数的函数结构图对复合函数求偏导数的过程进行分析.函数)],(),,([y x y x f z ψϕ=的结构图,如图8-4所示.从函数结构图可以看出,z 和x 的函数关系可以由两条路径得到.一条是经中间变量u 到达自变量x ,还有一条是经中间变量v 到达自变量x 的.从公式(1)的第一式可以看出,z 和x 的函数关系有两条路径,对应公式中就有两项,其中每一项由两个因子的乘积表示,两个因子的乘积都是函数关于中间变量的偏导数和中间变量关于自变量的偏导数的乘积构成.例8.4.1设)sin(y x e z xy+=,求x z ∂∂和yz ∂∂. 解:令y x v xy u +==,,则v e z usin = 函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv ∂∂⋅=sin cos uu e v y e v ⋅+ =sin()cos()xy xye x y y e x y +++,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv ∂∂⋅=sin cos uu e v x e v ⋅+=sin()cos()xy xye x y x e x y +++. 例8.4.2设2)(2y x y x z -+=,求x z ∂∂和yz ∂∂. 解:令22,y x v y x u -=+=,则vu z =,函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv∂∂⋅=1ln v v vu u u -+ =2222122()()()ln()x y x yx y x y x y x y ----+++-,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv∂∂⋅=12ln (2)v v vu y u u y -+- =22221222()()2()ln()x y x yy x y x y y x y x y ----+-+-.2.二元复合函数求导法则的推广和变形多元复合函数的中间变量可能是一个,也可能多于一个,同样,自变量的个数可能只有一个,也可能是两个或者更多.我们可以对定理1进行推广和变形,分以下几种情形讨论:(1)当函数z 有两个中间变量,而自变量只有一个,即)(),(),,(t v v t u u v u f z ===.函数结构图,如图8-6所示.因此(8-1)变形成为dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=.因为复合结果和中间变量都是t 的一元函数,应该使用一元函数的导数记号;为了与一元函数的导数相区别,我们称复合后一元函数的导数dtdz 为全导数.当函数z 有三个中间变量,而自变量只有一个,即)(),(),(),,,(t w w t v v t u u w v u f z ====.函数结构图,如图8-7所示.因此公式(8-1)可以推广成为 dt dw w z dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂+⋅∂∂=.(2)当函数z 有一个中间变量,而自变量有两个.例如),(),,(y x u x u f z ϕ==.函数结构图,如图8-8所示.此时(8-1)变形成为.yu u f y z x f x u u f x z ∂∂⋅∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂, 在上面第一个式中,xz∂∂表示在复合函数]),,([x y x f z ϕ=中,把y 看作常量,求得的z 对x 的偏导数;xf∂∂表示在复合函数],[x u f z =中,把u 看作常量,求得的z 对x 的偏导数,因此x z ∂∂和xf ∂∂表示的含义不同,在求偏导数是一定要注意,记号上不能混淆. 例如),(),(y x u u f z ϕ==,函数结构图,如图8-9所示.此时(8-1)变形成为.yu du dz y z x u du dz x z ∂∂⋅=∂∂∂∂⋅=∂∂,(3)当函数z 有两个中间变量,而自变量有三个,即),,(),,,(),,(w v u y y w v u x x y x f z ===.函数结构图,如图8-10所示。
第十七章 多元函数微分学2复合函数微分法一、复合函数的求导法则定义1:设函数x=φ(s,t)与y=ψ(s,t)定义在st 平面的区域D 上,z=f(x,y)定义在xy 平面的区域D 1上,{(x,y)|x=φ(s,t),y=ψ(s,t), (s,t)∈D}⊂D 1, 则函数z=F(s,t)=f(φ(s,t),ψ(s,t)), (s,t)∈D 是以f 为外函数,φ,ψ为内函数的复合函数. 其中x,y 称为函数F 的中间变量,s,t 为F 的自变量.定理17.5:若函数x=φ(s,t),y=ψ(s,t)在点(s,t)∈D 可微, z=f(x,y)在点(x,y)= (φ(s,t),ψ(s,t))可微,则复合函数z=f(φ(s,t),ψ(s,t))在点(s,t)可微,且它关于s 与t 的偏导数分别为:t)(s,sz ∂∂=t)(s,y )(x,sx x z ∂∂∂∂+t)(s,y )(x,sy y z ∂∂∂∂,t)(s,tz ∂∂=t)(s,y )(x,tx x z ∂∂∂∂+t)(s,y )(x,ty y z ∂∂∂∂.证:∵x=φ(s,t),y=ψ(s,t)在点(s,t)可微, ∴△x=s x ∂∂△s+t x ∂∂△t+α1△s+β1△t; △y=s y ∂∂△s+ty∂∂△t+α2△s+β2△t , 其中当△s,△t →0时,α1,α2,β1,β2→0, 又由z=f(x,y)在点(x,y)可微,∴△z=xz ∂∂△x+y z∂∂△y+α△x+β△y ,其中当△x,△y →0时,α,β→0,补充定义:当△x=0,△y=0时, α=β=0,则⎪⎭⎫ ⎝⎛∆∆∆∂∂∆∂∂⎪⎪⎭⎫ ⎝⎛+∂∂+⎪⎭⎫ ⎝⎛∆∆∆∂∂∆∂∂⎪⎭⎫ ⎝⎛+∂∂∆t β+s α+t t y +s sy βy z t β+s α+t t x +s s x αx z =z 2211=t β+s αt t y y z + t x x z s s y y z s x x z ∆∆+∆⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂+∆⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂,其中 α=x z ∂∂α1+y z ∂∂α2+s x ∂∂α+sy∂∂β+αα1+βα2,β=x z ∂∂β1+y z ∂∂β2+t x ∂∂α+ty∂∂β+αβ1+ββ2,由x=φ(s,t),y=ψ(s,t)在点(s,t)可微知,x=φ(s,t),y=ψ(s,t)在点(s,t)都连续, 即当△s,△t →0时,△x △y →0时,从而α,α1,α2,β,β1,β2→0,于是, 当△s,△t →0时,α,β→0,即z=F(s,t)在(s,t)可微,从而得:(链式法则)t)(s,sz∂∂=t)(s,y )(x,sx x z ∂∂∂∂+t)(s,y )(x,sy y z ∂∂∂∂,t)(s,tz ∂∂=t)(s,y )(x,tx x z ∂∂∂∂+t)(s,y )(x,ty y z ∂∂∂∂.注:1、若只求复合函数f(φ(s,t),ψ(s,t))关于s 或t 的偏导数,则内函数只需具有关于s 或t 的偏导数,但对外函数f 的可微性假设不能省略.如:函数f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x yx 2222222,有f x (0,0)=f y (0,0)=0,但f 在(0,0)处不可微. 若以f(x,y)为外函数,x=t, y=t 为内函数,则得 以t 为自变量的复合函数z=F(t)=f(t,t)=2t , ∴dt dz =21, 这时用链式法则, 将得到错误的结果:0t tz=∂∂=0t (0,0)tx x z =∂∂∂∂+t (0,0)tx yz =∂∂∂∂=0·1+0·1=0.2、若f(u 1,…,u m )在点(u 1,…,u m )可微,u k =g k (x 1,…,x n ) (k=1,2,…,m)在点(x 1,…,x n )具有关于x i (i=1,2,…,n)的偏导数,则复合函数关于自变量x i的偏导数为:i x z∂∂=∑=∂∂∂∂m1k ik k x u u z (i=1,2,…,n).例1:设z=ln(u 2+v), 而u=2y x e +, v=x 2+y ,求x z ∂∂,yz ∂∂. 解:x z ∂∂=x u u z ∂∂∂∂+x v v z ∂∂∂∂=2y x 2e v u u 2+⋅++x 2v u 12⋅+=yx e x 2e 22y 22x y 22x 22+++++;y z ∂∂=y u u z ∂∂∂∂+y v v z ∂∂∂∂=2y x 2ye 2v u u 2+⋅++v u 12+=yx e 1ye 42y 22x y 22x 22+++++.例2:设u=u(x,y)可微,在极坐标变换x=rcos θ, y=rsin θ下,证明:2r u ⎪⎭⎫⎝⎛∂∂+22θu r 1⎪⎭⎫ ⎝⎛∂∂=2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂. 解:∵r x ∂∂=cos θ, r y ∂∂=sin θ; θx ∂∂=-rsin θ, θy∂∂=rcos θ; 又 r u ∂∂=r x x u ∂∂∂∂+r y y u ∂∂∂∂=x u ∂∂cos θ+y u ∂∂sin θ;θu ∂∂=θy y u ∂∂∂∂+θx x u ∂∂∂∂=y u ∂∂rcos θ-xu ∂∂rsin θ;∴2r u ⎪⎭⎫ ⎝⎛∂∂=2x u ⎪⎭⎫ ⎝⎛∂∂cos 2θ+2y u ⎪⎪⎭⎫ ⎝⎛∂∂sin 2θ+y u x u ∂∂∂∂sin2θ; 22θu r 1⎪⎭⎫ ⎝⎛∂∂=2x u ⎪⎭⎫ ⎝⎛∂∂sin 2θ+2y u ⎪⎪⎭⎫ ⎝⎛∂∂cos 2θ-y u x u ∂∂∂∂sin2θ; ∴2r u ⎪⎭⎫ ⎝⎛∂∂+22θu r 1⎪⎭⎫ ⎝⎛∂∂=2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫⎝⎛∂∂.例3:设z=uv+sint, 其中u=e t ,v=cost, 求dtdz. 解法一:dt dz =dt du u z ∂∂+dt dv v z ∂∂+dtdt t z ∂∂=ve t -usint+cost=e t (cost-sint)+cost. 解法二:z=uv+sint=e t cost+sint ,∴dtdz=(e t cost+sint)’=e t (cost-sint)+cost.例4:用多元复合微分法计算下列一元函数的导数.(1)y=x x; (2)y=cosxsinx )lnxx (12++.解:(1)令y=u v , u=x, v=x , 则dx dy =dx du u y ∂∂+dxdv v y ∂∂=vu v-1+u v lnu=x x (1+lnx). (2)令y=uvw, u=sinx+cosx, v=1+x 2, w=lnx ,则dx dy =dx du u y ∂∂+dx dv v y ∂∂+dx dw w y ∂∂=-2uvw (cosx-sinx)+u w ·2x+x 1u v =22cosx)(sinx )lnx x (1++(sinx-cosx)+ cosx sinx 2xlnx ++cosx )x (sinx x 12++.例5:设u=f(x,y,z), y=φ(x,t), t=ψ(x,z)都有一阶连续偏导数,求x u ∂∂,zu ∂∂. 解:∵u=f(x,y,z)=f(x,φ(x,ψ(x,z)),z); ∴x u ∂∂=x f ∂∂+dx d φy f ∂∂+dxd ψdt d φy f ∂∂. 又u=f(x,y,z)=f(x,φ(x,ψ(x,z)),z); ∴z u ∂∂=dz d ψdt d φy f ∂∂+zf ∂∂.例6:设f(x,y)在R 2上可微,且满足方程y·f x (x,y)=x·f y (x,y). 证明:在极坐标中f 只是r 的函数,即θf∂∂=0. 证:设u=f(x,y), x=rcos θ, y=rsin θ,则有θf ∂∂=θx x f ∂∂∂∂+θyy f ∂∂∂∂=-f x (x,y)rsin θ+f y (x,y)rcos θ=-yf x (x,y)+x·f y (x,y)=0.二、复合函数的微分定义2:或以x 和y 为自变量的函数z=f(x,y)可微,则其全微分为: dz=xz∂∂dx+y z ∂∂dy. 如果x,y 作为中间变量又是自变量s,t 的可微函数:x=φ(s,t),y=ψ(s,t),则复合函数z=f(φ(s,t),ψ(s,t))是可微的,其全微分为: dz=s z ∂∂ds+t z ∂∂dt= ⎝⎛∂∂∂∂s x x z +⎪⎪⎭⎫∂∂∂∂s y y z ds+ ⎝⎛∂∂∂∂t x x z +⎪⎪⎭⎫∂∂∂∂t y y z dt =⎝⎛∂∂∂∂ds s x x z +⎪⎭⎫∂∂dt t x + ⎝⎛∂∂∂∂ds s y y z +⎪⎭⎫∂∂dt t y , 又x,y 是(s,t)的可微函数,因此有:dx=s x ∂∂ds+t x ∂∂dt; dy=s y ∂∂ds+t y ∂∂dt ;∴dz=xz∂∂dx+y z ∂∂dy ,结果与非复合函数完全相同,即多元函数有一阶(全)微分形式不变性.例7:设z=e xy sin(x+y), 利用微分形式不变性求dz, 并导出xz∂∂与y z ∂∂. 解:令z=e u sinv, 即u=xy, v=x+y, 则dz=u z ∂∂du+vz∂∂dv=e u sinvdu+e u cosvdv. 又du=ydx+xdy, dv=dx+dy,∴dz=e xy sin(x+y)(ydx+xdy)+e xy cos(x+y)(dx+dy)=e xy [ysin(x+y)+cos(x+y)]dx+e xy [xsin(x+y)+cos(x+y)]dy. 并可得:xz ∂∂=e xy[ysin(x+y)+cos(x+y)];y z ∂∂=e xy [xsin(x+y)+cos(x+y)].习题1、求下列复合函数的偏导数或导数: (1)设z=arctan(xy), y=e x , 求dxdz;(2)设z=xy y x 22+exyy x 22+, 求x z ∂∂,yz ∂∂; (3)设z=x 2+xy+y 2,x=t 2,y=t,求dtdz;(4)设z=x 2lny,x=v u ,y=3u-2v,求u z ∂∂,v z ∂∂;(5)设u=f(x+y,xy), 求x u ∂∂,y u ∂∂;(6)设u=f ⎪⎪⎭⎫ ⎝⎛z y ,y x , 求x u ∂∂,y u ∂∂,z u∂∂. 解:(1)dx dz =x z ∂∂+dx dy y z ∂∂=22yx 1y ++ 22y x 1x +e x =2x2xe x 1x )(1e ++. (2)令u=x yy x 22+, 则z=ue u ,∴x z ∂∂=x u du dz ∂∂=(1+u)e u (y 1-2x y )=232222yx )y x )(y xy (x -++e xyy x 22+;y z ∂∂=y u du dz ∂∂=(1+u)e u (x 1-2y x )=322222yx )x y )(y xy (x -++e xyy x 22+.(3)dt dz =dtdxx z ∂∂+ dt dy y z ∂∂=(2x+y)·2t+(x+2y)·1=2t(2t 2+t)+t 2+2t=4t 3+3t 2+2t.(4)u z ∂∂=u x x z ∂∂∂∂+u y y z ∂∂∂∂=2xlny·v 1+y x 2·3=2v 2u ln(3u-2v) +2v)-(3u v 3u 22; v z ∂∂=v x x z ∂∂∂∂+v y y z ∂∂∂∂=2xlny·⎪⎭⎫ ⎝⎛-2v u +y x2·(-2)=-32v 2u ln(3u-2v)-2v)-(3u v 2u 22.(5)∵du=f 1d(x+y)+f 2d(xy)=f 1dx+f 1dy+f 2ydx+f 2xdy=(f 1+yf 2)dx+(f 1+xf 2)dy ; ∴xu∂∂=f 1+yf 2;y u ∂∂=f 1+xf 2.(6)∵du=f 1d ⎪⎪⎭⎫ ⎝⎛y x +f 2d ⎪⎭⎫ ⎝⎛z y =211y x dy f -ydx f +222zydzf -zdy f =y f 1dx+(z f 2-21y xf )dy-22zyf dz ; ∴x u ∂∂=y f 1;y u ∂∂=z f 2-21y xf ;z u∂∂=-22zyf .2、设z=(x+y)xy , 求dz.解: 令u=x+y, v=xy ,则z=u v ,且du=dx+dy ,dv=ydx+xdy. ∴dz=u z ∂∂du+vz∂∂dv=vu v-1(dx+dy)+u v (ydx+xdy)lnv =xy(x+y)xy-1dx+xy(x+y)xy-1dy+y(x+y)xy (lnx+lny)dx+x(x+y)xy (lnx+lny)dy =[xy(x+y)xy-1+y(x+y)xy (lnx+lny)]dx+[xy(x+y)xy-1+x(x+y)xy (lnx+lny)]dy. 3、设z=)y -f(x y 22,其中f 为可微函数,验证:xz x 1∂∂+y z y 1∂∂=2y z.证:令u=x 2-y 2, 则x z ∂∂=x u u z ∂∂∂∂=(u)f (u)f x y 22'-; y z ∂∂=y z ∂∂+y u u z ∂∂∂∂=(u)f (u)f y 2f(u)22'+; ∴x z x 1∂∂+y z y 1∂∂=(u)f (u)f y 22'-+(u)f (u)f y 2yf(u)2'+=(u)yf f(u)2=yf(u)1;又2y z =2y )f(u y=yf(u)1;∴x z x 1∂∂+y z y 1∂∂=2y z.4、设z=siny+f(sinx-siny), 其中f 为可微函数,证明:xz ∂∂secx+y z∂∂secy=1.证:令u=sinx-siny ,则x z ∂∂=xuu z ∂∂∂∂=f ’(u)cosx; y z ∂∂=y z ∂∂+y u u z ∂∂∂∂=[1-f ’(u)]cosy;∴xz ∂∂secx+y z∂∂secy=f ’(u)cosxsecx+[1-f ’(u)]cosysecy= f ’(u)+1-f ’(u)=1.5、设f(x,y)可微,证明:在坐标旋转变换x=ucos θ-vsin θ, y=usin θ+vcos θ之下(旋转角θ为常数),(f x )2+(f y )2是一个形式不变量,即 若g(u,v)=f(ucos θ-vsin θ,usin θ+vcos θ),则必有(f x )2+(f y )2=(g u )2+(g v )2. 证:g u =u x x f ∂∂∂∂+u y y f ∂∂∂∂=f x cos θ+f y sin θ;g v =v x x f ∂∂∂∂+vy y f ∂∂∂∂=-f x sin θ+f y cos θ; ∴(g u )2+(g v )2=(f x cos θ+f y sin θ)+(-f x sin θ+f y cos θ)2=(cos 2θ+sin 2θ)(f x )2+(sin 2θ+cos 2θ)(f y )2+2f x cos θ·f y sin θ-2f x sin θ·f y cos θ =(f x )2+(f y )2.6、设f(u)是可微函数,F(x,t)=f(x+2t)+f(3x-2t). 试求:F x (0,0)与F t (0,0). 解:令u=x+2t, v=2x-2t ,则F u |(0,0)=f ’(0);F v |(0,0)=f ’(0).又F x =x u u F ∂∂∂∂+x v v F ∂∂∂∂=F u +3 F v ; F t =t u u F ∂∂∂∂+tvv F ∂∂∂∂=2F u -2 F v ; ∴F x (0,0)=F u |(0,0)+ 3F v |(0,0)=4f ’(0);F t (0,0)=2F u |(0,0)-2F v |(0,0)=0.7、若函数u=F(x,y,z)满足恒等式F(tx,ty,tz)=t k F(x,y,z), (t>0), 则称F(x,y,z)为k 次齐次函数. 试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为k 次齐次函数的充要条件是:xF x (x,y,z)+yF y (x,y,z)+zF z (x,y,z)=kF(x,y,z).并证明:z=222yx xy +-xy 为2次齐次函数.证:(1)令a=tx,b=ty,c=tz.[必要性]由F(tx,ty,tz)=t k F(x,y,z), (t>0),两边对t 求导得:t a a F ∂∂∂∂+t b b F ∂∂∂∂+tc c F ∂∂∂∂=kt k-1F(x,y,z),即 xF a (a,b,c)+yF b (a,b,c)+zF c (a,b,c)=kt k-1F(x,y,z),令t=1,则有 xF x (x,y,z)+yF y (x,y,z)+zF z (x,y,z)=kF(x,y,z). [充分性]设f(x,y,z,t)=k t1F(tx,ty,tz), (t>0),求f 关于t 的偏导数得 t f∂∂=1k t1+{[xF a (a,b,c)+yF b (a,b,c)+zF c (a,b,c)]t-kF(a,b,c)}; ∵F a (a,b,c)+yF b (a,b,c)+zF c (a,b,c)=kF(a,b,c),∴tf∂∂=0. 即f 与t 无关,只是x,y,z 的函数,可记g(x,y,z)=f(x,y,z,t), ∴t k g(x,y,z)=F(tx,ty,tz), (t>0). 当t=1时,g(x,y,z)=F(x,y,z), ∴F(tx,ty,tz)=t k F(x,y,z). (2)∵当t>0时,z(tx,ty)=2223y x t xy t +-t 2xy=t 2(222y x xy +-xy)=t 2z(x,y);∴z(x,y)为2次齐次函数.8、设f(x,y,z)具有性质f(tx,t k y,t m z)=t n f(x,y,z),证明:(1)f(x,y,z)=x n f(1,kx y ,m xz);(2)xf x (x,y,z)+kyf y (x,y,z)+mzf z (x,y,z)=nf(x,y,z). 证:(1)由f(tx,t k y,t m z)=t n f(x,y,z), 令t=x 1,则f(1,k x y ,m x z )=n x1f(x,y,z),即有f(x,y,z)=x n f(1,k x y ,m xz).(2)令a=tx, b=t k y, c=t m z ,对f(tx,t k y,t m z)=t n f(x,y,z)两边关于t 求偏导数得: xf a (a,b,c)+yf b (a,b,c)+f c (a,b,c)=nt n-1f(x,y,z),当t=1时,即有 xf x (x,y,z)+kyf y (x,y,z)+mzf z (x,y,z)=nf(x,y,z).9、设由行列式表示的函数D(t)=)t (a )t (a )t (a )t (a nn n11n 11⋯⋯⋯⋯⋯, 其中a ij (t) (i,j=1,2,…,n)的导数都存在. 证明:dt dD(t)=∑=⋯⋯⋯⋯⋯'⋯''⋯⋯⋯⋯⋯n1k nn n2n1k n k 2k 11n 1211)t (a )t (a )t (a )t (a )t (a )t (a )t (a )t (a )t (a . 证:记x ij =a ij (t) (i,j=1,2,…,n), f(x 11,x 12,…,x ij ,…,x nn )=nnn11n11x x x x ⋯⋯⋯⋯⋯.由行列式定义知f 为n 2元的可微函数且D(t)=f(a 11(t),…,a ij (t),…,a nn (t)),又由复合函数求导法则知D ’(t)=dt dx x f ij n1j ,i ij ∑=∂∂=∑=∂∂n 1j ,i ijx f a ’ij (t),记nnn11n 11x x x x ⋯⋯⋯⋯⋯中x ij 的代数余子式为A ij ,则f(x 11,…,x ij ,…,x nn )=∑=n1j ,i ij ij A x .又ij x f ∂∂=A ij ,∴D ’(t)=∑∑==n 1i n1j ij (t)A a ’ij (t),其中A ij (t)是将A ij 的元素x hl 换为a hl (t)后得到的n-1阶行列式,恰为行列式)t (a )t (a )t (a )t (a )t (a )t (a )t (a )t (a )t (a nn n2n1in i2i11n 1211⋯⋯⋯⋯⋯'⋯''⋯⋯⋯⋯⋯中a ’ij (t)的代数余分式,于是知 D ’(t)=∑=⋯⋯⋯⋯⋯'⋯''⋯⋯⋯⋯⋯n1k nn n2n1k n k 2k 11n 1211)t (a )t (a )t (a )t (a )t (a )t (a )t (a )t (a )t (a .。