MATLAB仿真应用_第5章(2)
- 格式:ppt
- 大小:8.40 MB
- 文档页数:85
matlab控制系统课程设计一、课程目标知识目标:1. 学生能掌握MATLAB软件的基本操作,并运用其进行控制系统的建模与仿真。
2. 学生能理解控制系统的基本原理,掌握控制系统的数学描述方法。
3. 学生能运用MATLAB软件分析控制系统的稳定性、瞬态响应和稳态性能。
技能目标:1. 学生能运用MATLAB软件构建控制系统的模型,并进行时域和频域分析。
2. 学生能通过MATLAB编程实现控制算法,如PID控制、状态反馈控制等。
3. 学生能对控制系统的性能进行优化,并提出改进措施。
情感态度价值观目标:1. 学生通过课程学习,培养对自动化技术的兴趣和热情,提高创新意识和实践能力。
2. 学生在团队协作中,学会沟通与交流,培养合作精神和集体荣誉感。
3. 学生能认识到控制系统在现代工程技术中的重要作用,增强社会责任感和使命感。
课程性质:本课程为实践性较强的课程,注重理论知识与实际应用相结合。
学生特点:学生具备一定的数学基础和控制理论基础知识,对MATLAB软件有一定了解。
教学要求:教师需采用案例教学法,引导学生运用MATLAB软件进行控制系统设计,注重培养学生的实际操作能力和解决问题的能力。
同时,将课程目标分解为具体的学习成果,以便进行教学设计和评估。
二、教学内容1. 控制系统概述:介绍控制系统的基本概念、分类及发展历程,使学生了解控制系统的基本框架。
- 教材章节:第一章 控制系统概述2. 控制系统的数学模型:讲解控制系统的数学描述方法,包括微分方程、传递函数、状态空间方程等。
- 教材章节:第二章 控制系统的数学模型3. MATLAB软件操作基础:介绍MATLAB软件的基本操作,包括数据类型、矩阵运算、函数编写等。
- 教材章节:第三章 MATLAB软件操作基础4. 控制系统建模与仿真:利用MATLAB软件进行控制系统的建模与仿真,分析系统的稳定性、瞬态响应和稳态性能。
- 教材章节:第四章 控制系统建模与仿真5. 控制算法及其MATLAB实现:讲解常见控制算法,如PID控制、状态反馈控制等,并通过MATLAB编程实现。
二阶弹簧—阻尼系统PID控制器设计及其参数整定班级:自动化12-1班_姓名: ________学号: _________指导老师: ______前言 (1)一、MATLAB产生的历史背景 (1)二、MATLAB的语言特点 (2)三、Matlab的典型应用 (3)第一章、比例控制系统 (4)第二章、积分控制系统 (4)第三章、比例积分系统 (5)第四章、比例积分微分系统 (5)第五章、原理的应用仿真 (7)第六章、仿真的结果 (8)第七章、结果分析 (12)第八章、结论 (12)心得体会 (14)参考文献 (15)PID控制器结构简单,其概念容易理解,算法易于实现,且具有一定的鲁棒性,因此,在过程控制领域中仍被广泛使用,除非在特殊情况下证明它不能满足既定的性能要求。
对于单输入单输出的系统,尤其是阶跃响应单调变化的低阶对象,已有大量的PID整定方法及其比较研究。
当对象的阶跃响应具有欠阻尼特性时,如果仍近似为惯性对象,被忽略的振荡特性有可能引起控制品质的恶化。
现有的一些针对二阶欠阻尼对象的PID整定方法,例如极点配置方法,幅值相位裕量方法等,尽管在各自的假设前提下取得了较好的控制效果,但并非适用于所有的二阶欠阻尼对象,其性能鲁棒性问题也有待讨论。
本文通过使用MATLAB对二阶弹簧—阻尼系统的控制器(分别使用P、PI、PID控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。
同时,掌握MATLAB语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK对系统进行仿真,掌握PID控制器参数的设计。
一、MATLAB产生的历史背景在20世纪70年代中期,Cleve Moler博士和其同事在美国国家科学基金的资助下开发了调用EISPACK和LINPACK的FORTRAN子程序库。
EISPACK是特征值求解的FORTRAN程序库,LINPACK是解线性方程的程序库。
在当时,这两个程序库代表矩阵运算的最高水平。
第1章控制系统计算机辅助设计概述第2章 MATLAB语言程序设计基础第3章线性控制系统的数学模型第4章线性控制系统的计算机辅助分析第5章 Simulink在系统仿真中的应用第6章控制系统计算机辅助设计第1章控制系统计算机辅助设计概述【1】已阅,略【2】已阅,略【3】已经掌握help命令和Help菜单的使用方法【4】区别:MATLAB语言实现矩阵的运算非常简单迅速,且效率很高,而用其他通用语言则不然,很多通用语言所实现的矩阵运算都是对矩阵维数具有一点限制的,即使限制稍小的,但凡维数过大,就会造成运算上的溢出出错或者运算出错,甚至无法处理数据的负面结果【5】【8】(1)输入激励为正弦信号(2)输入激励为脉冲模拟信号(3)输入激励为时钟信号(4) 输入激励为随机信号(5) 输入激励为阶跃信号δ=0.3δ=0.05δ=0.7结论:随着非线性环节的死区增大,阶跃响应曲线的范围逐渐被压缩,可以想象当死区δ足够大时,将不再会有任何响应产生。
所以可以得到结论,在该非线性系统中,死区的大小可以改变阶跃响应的幅值和超调量。
死区越大,幅值、超调量将越小,而调整时间几乎不受其影响第2章 MATLAB语言程序设计基础【1】>> A=[1 2 3 4;4 3 2 1;2 3 4 1;3 2 4 1]A =1 2 3 44 3 2 12 3 4 13 24 1>> B=[1+4i,2+3i,3+2i,4+i;4+i,3+2i,2+3i,1+4i;2+3i,3+2i,4+i,1+4i;3+2i,2+3i,4+i,1+4i]B =1.0000 + 4.0000i2.0000 +3.0000i 3.0000 + 2.0000i4.0000 + 1.0000i4.0000 + 1.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 1.0000 + 4.0000i2.0000 +3.0000i 3.0000 + 2.0000i4.0000 + 1.0000i 1.0000 + 4.0000i3.0000 + 2.0000i 2.0000 + 3.0000i4.0000 + 1.0000i 1.0000 + 4.0000i>> A(5,6)=5A =1 2 3 4 0 04 3 2 1 0 02 3 4 1 0 03 24 1 0 00 0 0 0 0 5∴若给出命令A(5,6)=5则矩阵A的第5行6列将会赋值为5,且其余空出部分均补上0作为新的矩阵A,此时其阶数为5×6【2】相应的MATLAB命令:B=A(2:2:end,:)>> A=magic(8)A =64 2 3 61 60 6 7 579 55 54 12 13 51 50 1617 47 46 20 21 43 42 2440 26 27 37 36 30 31 3332 34 35 29 28 38 39 2541 23 22 44 45 19 18 4849 15 14 52 53 11 10 568 58 59 5 4 62 63 1>> B=A(2:2:end,:)B =9 55 54 12 13 51 50 1640 26 27 37 36 30 31 3341 23 22 44 45 19 18 488 58 59 5 4 62 63 1∴从上面的运行结果可以看出,该命令的结果是正确的【3】>> syms x s; f=x^5+3*x^4+4*x^3+2*x^2+3*x+6f =x^5 + 3*x^4 + 4*x^3 + 2*x^2 + 3*x + 6>> [f1,m]=simple(subs(f,x,(s-1)/(s+1)))f1 =19 - (72*s^4 + 120*s^3 + 136*s^2 + 72*s + 16)/(s + 1)^5m =simplify(100)【4】>> i=0:63; s=sum(2.^sym(i))s =0615【5】>> for i=1:120if(i==1|i==2) a(i)=1;else a(i)=a(i-1)+a(i-2);endif(i==120) a=sym(a); disp(a); endend[ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, , , , , 5, 1, 6, 7, 3, 70, 03, 73, 76, 49, , 074, 099, 173, 272, 2445, 3717, 6162, 9879, 6041, 55920, 81961, 37881, 19842, 106, 177565, 035288, 212853, 248141, 0460994, , 1170129, 1879264, 8065, , , , 00884757, , 0, 5, 6, 1, 0, 88, , 673, 58, 931, , 120, , 029, 4, 2, 9905, 3072, 2977, 46049, 69026, 15075, 40, 99176, 083277, 082453, 165730, 248183, 7576, 62096, , 4738105, 5814114, 9, 186333, , 284885, 9, 3488322, 9, 0, 0]【6】>>k=1;for i=2:1000for j=2:iif rem(i,j)==0if j<i, break;endif j==i, A(k)=i; k=k+1; break; endendendenddisp(A);Columns 1 through 132 3 5 7 11 13 17 19 23 29 31 37 41 Columns 14 through 2643 47 53 59 61 67 71 73 79 83 89 97 101 Columns 27 through 39103 107 109 113 127 131 137 139 149 151 157 163 167 Columns 40 through 52173 179 181 191 193 197 199 211 223 227 229 233 239 Columns 53 through 65241 251 257 263 269 271 277 281 283 293 307 311 313 Columns 66 through 78317 331 337 347 349 353 359 367 373 379 383 389 397 Columns 79 through 91401 409 419 421 431 433 439 443 449 457 461 463 467 Columns 92 through 104479 487 491 499 503 509 521 523 541 547 557 563 569 Columns 105 through 117571 577 587 593 599 601 607 613 617 619 631 641 643 Columns 118 through 130647 653 659 661 673 677 683 691 701 709 719 727 733 Columns 131 through 143739 743 751 757 761 769 773 787 797 809 811 821 823 Columns 144 through 156827 829 839 853 857 859 863 877 881 883 887 907 911 Columns 157 through 168919 929 937 941 947 953 967 971 977 983 991 997【7】说明:h和D在MATLAB中均应赋值,否则将无法实现相应的分段函数功能syms x; h=input(‘h=’); D=input(‘D=’);y=h.*(x>D)+(h.*x/D).*(abs(x)<=D)-h.*(x<-D)【10】function y=fib(k)if nargin~=1,error('出错:输入变量个数过多,输入变量个数只允许为1!');endif nargout>1,error('出错:输出变量个数过多!');endif k<=0,error('出错:输入序列应为正整数!');endif k==1|k==2,y=1;else y=fib(k-1)+fib(k-2);endend【13】【14】>> t=[-1:0.001:-0.2,-0.1999:0.0001:0.1999,0.2:0.001:1];y=sin(1./t);plot(t,y);grid on;【15】(1) >> t=-2*pi:0.01:2*pi;r=1.0013*t.^2;polar(t,r);axis('square')(2) >> t=-2*pi:0.001:2*pi;r=cos(7*t/2);polar(t,r);axis('square')(3) >> t=-2*pi:0.001:2*pi;r=sin(t)./t;polar(t,r);axis('square')(4) >> t=-2*pi:0.001:2*pi;r=1-cos(7*t).^3;polar(t,r);axis('square')【17】(1)z=xy>> [x,y]=meshgrid(-3:0.01:3,-3:0.01:3);z=x.*y;mesh(x,y,z);>> contour3(x,y,z,50);(1)z=sin(xy)>> [x,y]=meshgrid(-3:0.01:3,-3:0.01:3);z=sin(x.*y);mesh(x,y,z);>> contour3(x,y,z,50);第3章线性控制系统的数学模型【1】(1) >> s=tf('s');G=(s^2+5*s+6)/(((s+1)^2+1)*(s+2)*(s+4))Transfer function:s^2 + 5 s + 6--------------------------------s^4 + 8 s^3 + 22 s^2 + 28 s + 16(2) >> z=tf('z',0.1);H=5*(z-0.2)^2/(z*(z-0.4)*(z-1)*(z-0.9)+0.6)Transfer function:5 z^2 - 2 z + 0.2---------------------------------------z^4 - 2.3 z^3 + 1.66 z^2 - 0.36 z + 0.6Sampling time (seconds): 0.1【2】(1)该方程的数学模型>> num=[6 4 2 2];den=[1 10 32 32];G=tf(num,den)Transfer function:6 s^3 + 4 s^2 + 2 s + 2------------------------s^3 + 10 s^2 + 32 s + 32(2)该模型的零极点模型>> G=zpk(G)Zero/pole/gain:6 (s+0.7839) (s^2 - 0.1172s + 0.4252)-------------------------------------(s+4)^2 (s+2)(3)由微分方程模型可以直接写出系统的传递函数模型【5】(1) >> P=[0;0;-5;-6;-i;i];Z=[-1+i;-1-i];G=zpk(Z,P,8)Zero/pole/gain:8 (s^2 + 2s + 2)-------------------------s^2 (s+5) (s+6) (s^2 + 1)(2) P=[0;0;0;0;0;8.2];Z=[-3.2;-2.6];H=zpk(Z,P,1,'Ts',0.05,'Variable','q')Zero/pole/gain:(q+3.2) (q+2.6)---------------q^5 (q-8.2)Sampling time (seconds): 0.05【8】(1)闭环系统的传递函数模型>> s=tf('s');G=10/(s+1)^3;Gpid=0.48*(1+1/(1.814*s)+0.4353*s/(1+0.4353*s));G1=feedback(Gpid*G,1)Transfer function:7.58 s^2 + 10.8 s + 4.8--------------------------------------------------------------0.7896 s^5 + 4.183 s^4 + 7.811 s^3 + 13.81 s^2 + 12.61 s + 4.8 (2)状态方程的标准型实现>> G1=ss(G1)a =x1 x2 x3 x4 x5 x1 -5.297 -2.473 -2.186 -0.9981 -0.7598x2 4 0 0 0 0 x3 0 2 0 0 0 x4 0 0 2 0 0x5 0 0 0 0.5 0b =u1x1 2x2 0x3 0x4 0x5 0c =x1 x2 x3 x4 x5y1 0 0 0.6 0.4273 0.3799d =u1y1 0Continuous-time state-space model.(3)零极点模型>> G1=zpk(G1)Zero/pole/gain:9.6 (s^2 + 1.424s + 0.6332)--------------------------------------------------------(s+3.591) (s^2 + 1.398s + 0.6254) (s^2 + 0.309s + 2.707)【11】>> Ga=feedback(s/(s^2+2)*1/(s+1),(4*s+2)/(s+1)^2);Gb=feedback(1/s^2,50);G=3*feedback(Gb*Ga,(s^2+2)/(s^3+14))Transfer function:3 s^6 + 6 s^5 + 3 s^4 + 42 s^3 + 84 s^2 + 42 s---------------------------------------------------------------------------s^10 + 3 s^9 + 55 s^8 + 175 s^7 + 300 s^6 + 1323 s^5 + 2656 s^4 + 3715 s^3+ 7732 s^2 + 5602 s + 1400【13】c1=feedback(G5*G4,H3)=G5*G4/(1+G5*G4*H3)c2=feedback(G3,H4*G4)=G3/(1+G3*H4*G4)c3=feedback(c2*G2,H2)=c2*G2/(1+c2*G2*H2)=G3*G2/(1+G3*H4*G4+G3*G2*H1)G=feedback(G6*c1*c3*G1,H1)=G6*c1*c3*G1/(1+ G6*c1*c3*G1*H1)=G6*G5*G4*G3*G2*G1/(1+G3*H4*G4+G3*G2*H1+G5*G4*H3+G5*G4*H3*G3*H4*G4+G5*G4* H3*G3*G2*H1+G6*G5*G4*G3*G2*G1*H1)【14】>> s=tf('s');c1=feedback(0.21/(1+0.15*s),0.212*130/s);c2=feedback(c1*70/(1+0.0067*s)*(1+0.15*s)/(0.051*s),0.1/(1+0.01*s));G=(1/(1+0.01*s))*feedback(130/s*c2*1/(1+0.01*s)*(1+0.17*s)/(0.085*s),0.0044/(1+0.01*s)) Transfer function:0.004873 s^5 + 1.036 s^4 + 61.15 s^3 + 649.7 s^2 + 1911 s---------------------------------------------------------------------------4.357e-014 s^10 + 2.422e-011 s^9 +5.376e-009 s^8 +6.188e-007 s^7+ 4.008e-005 s^6 + 0.001496 s^5 + 0.03256 s^4 + 0.4191 s^3+ 2.859 s^2 + 8.408 s 第4章线性控制系统的计算机辅助分析【1】(1) >> num=[1];den=[3 2 1 2];G=tf(num,den);eig(G)ans =-1.00000.1667 + 0.7993i0.1667 - 0.7993i分析:由以上信息可知,系统的极点有2个是在s域的右半平面的,因此系统是不稳定的(2) >> num=[1];den=[6 3 2 1 1];G=tf(num,den);eig(G)ans =-0.4949 + 0.4356i-0.4949 - 0.4356i0.2449 + 0.5688i0.2449 - 0.5688i分析:由以上信息可知,系统的极点有2个是在s域的右半平面的,因此系统是不稳定的(3) >> num=[1];den=[1 1 -3 -1 2];G=tf(num,den);eig(G)ans =-2.0000-1.00001.00001.0000分析:由以上信息可知,系统的极点有2个是在s域的右半平面的,因此系统是不稳定的(4) >> num=[3 1];den=[300 600 50 3 1];G=tf(num,den);eig(G)ans =-1.9152-0.14140.0283 + 0.1073i0.0283 - 0.1073i分析:由以上信息可知,系统的极点有2个是在s域的右半平面的,因此系统是不稳定的(5) >> s=tf('s');G=0.2*(s+2)/(s*(s+0.5)*(s+0.8)*(s+3)+0.2*(s+2));eig(G)ans =-3.0121-1.0000-0.1440 + 0.3348i-0.1440 - 0.3348i分析:由以上信息可知,系统的所有极点都在s域的左半平面,因此系统是稳定的【2】(1) >> num=[-3 2];den=[1 -0.2 -0.25 0.05];H=tf(num,den,'Ts',0.5);abs(eig(H)')ans =0.5000 0.5000 0.2000分析:由以上信息可知,所有特征根的模均小于1,因此该系统是稳定的(2) >> num=[3 -0.39 -0.09];den=[1 -1.7 1.04 0.268 0.024];H=tf(num,den,'Ts',0.5);abs(eig(H)')ans =1.1939 1.1939 0.1298 0.1298分析:由以上信息可知,由于前两个特征根的模均大于1,因此该系统是不稳定的(3) >> num=[1 3 -0.13];den=[1 1.352 0.4481 0.0153 -0.01109 -0.001043];H=tf(num,den,'Ts',0.5);abs(eig(H)')ans =0.8743 0.1520 0.2723 0.2344 0.1230分析:由以上信息可知,所有特征根的模均小于1,因此该系统是稳定的(4) >> num=[2.12 11.76 15.91];den=[1 -7.368 -20.15 102.4 80.39 -340];H=tf(num,den,'Ts',0.5,'Variable','q');abs((eig(H))')ans =8.2349 3.2115 2.3415 2.3432 2.3432分析:由以上信息可知,所有特征根的模均大于1,因此该系统是不稳定的【3】(1) >> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0,-14.3,85.8,0;0,0,0,-33.3,100;0,0,0,0,-10];eig(A)ans =-0.2000-0.5000-14.3000-33.3000-10.0000分析:由以上信息可知,该连续线性系统的A矩阵的所有特征根的实部均为负数,因此该系统是稳定的(2)>>F=[17,24.54,1,8,15;23.54,5,7,14,16;4,6,13.75,20,22.5589;10.8689,1.2900,19.099,…-4-3.5-3-2.5-2-1.5-1-0.50x 10-6P ole-Zero Map Real Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)21.896,3;11,18.0898,25,2.356,9];abs(eig(F)') ans =63.7207 23.5393 12.4366 13.3231 19.7275分析:由以上信息可知,该离散系统的F 矩阵的所有特征根的模均大于1,因此该系统是不稳定的 【4】>> A=[-3 1 2 1;0 -4 -2 -1;1 2 -1 1;-1 -1 1 -2]; B=[1 0;0 2;0 3;1 1];C=[1 2 2 -1;2 1 -1 2];D=[0 0;0 0];G=ss(A,B,C,D); tzero(G)pzmap(G)ans =-3.6124-1.2765结论:∴可以得到该系统的 零点为-3.6124、-1.2765 分析:由以上信息可知,【5】>> s=tf('s');Gc=sscanform(G,'ctrl') Go=sscanform(G,'obsv') a =x1 x2 x3 x4 x1 0 1 0 0 x2 0 0 1 0 x3 0 0 0 1 x4 -0.4 -1.4 -4.3 -4.3 b =u1 x1 0 x2 0 x3 0 x4 1 c =x1 x2 x3 x4 y1 0.4 0.2 0 0 d =u1 y1 0Continuous-time state-space model. a =x1 x2 x3 x4x1 0 0 0 -0.4x2 1 0 0 -1.4x3 0 1 0 -4.3x4 0 0 1 -4.3b =u1x1 0.4x2 0.2x3 0x4 0c =x1 x2 x3 x4y1 0 0 0 1d =u1y1 0Continuous-time state-space model.【9】(1)>> num=[18 514 5982 36380 122664 222088 185760 40320];den=[1 36 546 4536 22449 67284 118124 109584 40320];[R1,P1,K1]=residue(num,[den 0]);[R1,P1]ans =-1.2032 -8.0000-1.0472 -7.00000.2000 -6.00000.7361 -5.0000-2.8889 -4.00002.2250 -3.0000-2.0222 -2.00003.0004 -1.00001.0000 0>> [n,d]=rat(R1);sym([n./d]')ans =[ -379/315, -377/360, 1/5, 53/72, -26/9, 89/40, -91/45, 7561/2520, 1][阶跃响应的解析解]y(t)=(-379/315)*e-8t+(-377/360)*e-7t+(1/5)*e-6t+(53/72)*e-5t+(-26/9)*e-4t+(89/40)*e-3t+ (-90/45)*e-2t+(7561/2520)*e-t+1(2) >> num=[18 514 5982 36380 122664 222088 185760 40320];den=[1 36 546 4536 22449 67284 118124 109584 40320];[R2,P2,K2]=residue(num,den);[R2,P2]ans =9.6254 -8.00007.3306 -7.0000-1.2000 -6.0000-3.6806 -5.000011.5556 -4.0000-6.6750 -3.00004.0444 -2.0000-3.0004 -1.0000>> [n,d]=rat(R2);sym([n./d]')ans =[ 3032/315, 887/121, -6/5, -265/72, 104/9, -267/40, 182/45, -7561/2520][脉冲响应的解析解]y(t)=(3032/315)*e-8t+(887/121)*e-7t+(-6/5)*e-6t+(-265/72)*e-5t+(104/9)*e-4t+(-267/40)*e-3t+(182/45)*e-2t+(-7561/2520)*e-t(3) >> syms t;u=sin(3*t+5);Us=laplace(u)Us =(3*cos(5) + s*sin(5))/(s^2 + 9)>> s=tf('s');Us=(3*cos(5)+s*sin(5))/(s^2+9);num=[18 514 5982 36380 122664 222088 185760 40320];den=[1 36 546 4536 22449 67284 118124 109584 40320];G=tf(num,den); Y=Us*G;num=Y.num{1}; den=Y.den{1};[R3,P3,K3]=residue(num,den); [R3,P3]ans =1.1237 -8.00000.9559 -7.0000-0.1761 -6.0000-0.6111 -5.00002.1663 -4.0000-1.1973 - 0.0010i 0.0000 + 3.0000i-1.1973 + 0.0010i 0.0000 - 3.0000i-1.3824 -3.00000.8614 -2.0000-0.5430 -1.0000>> [n,d]=rat(R3);sym([n./d]')ans =[109/97, 282/295, -59/335, -965/1579, 951/439, - 449/375 + (18*i)/17981, - 449/375 - (18*i)/17981, -1663/1203, 317/368, -82/151]Linear Simulation Results Time (seconds)A m p l i t u d e [正弦信号时域响应的解析解]y(t)=(109/97)*e -8t +(282/295)*e -7t +(-59/335)*e -6t +(-965/1579)*e -5t +(-449/375)*e -4t +(-1663/1203)*e -3t +(317/368)*e -2t +(-82/151)*e -t -2.3947sin(3t)[输出波形]>> num=[18 514 5982 36380 122664 222088 185760 40320];den=[1 36 546 4536 22449 67284 118124 109584 40320]; G=tf(num,den); t=[1:.1:20]';u=sin(3*t+5); lsim(G,u,t);分析:由解析解可知,输出信号的稳态部分是振荡的,并且其幅值与相位始终 在到达稳态的时候保持不变,因此 右图所示的输出波形与解析解所得的结论是一致的【10】(1)因为PI 或PID 控制器均含有Ki/s 节,则当Kp →∞,即|e(t)|一环节后,如果要求|e(t)|→0(2)不稳定系统能用PI 或PID 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。