信号与系统的MATLAB仿真
- 格式:doc
- 大小:1.11 MB
- 文档页数:27
信号与系统是电子信息类专业的一门重要课程,它涉及到信号的产生、传输、处理和系统对信号的响应等内容。
而对于学习该课程的学生来说,掌握好相关知识和技能对于以后的学习和工作都至关重要。
选择一本优质的信号与系统的 MATLAB 书籍就显得至关重要。
通过本文,我将向您推荐一本值得阅读的信号与系统的 MATLAB 书籍,并简要介绍其内容,希望能够给您的学习和工作带来帮助。
1. 《MATLAB仿真信号与系统建模教程》这本书由普林斯顿大学教授 Dennis S. Bernstein 和舒洛克教授撰写,是一本信号与系统领域的经典教材。
它通过 MATLAB 实例来解释信号与系统的基本概念,包括线性时不变系统(LTI 系统)、傅立叶分析、滤波器设计等内容。
考虑到大多数学生对 MATLAB 操作不熟练,本书还附带了 MATLAB 的简要入门教程,帮助读者快速掌握 MATLAB 在信号与系统中的应用。
2. 《MATLAB在信号与系统中的应用》这是一本由国内著名信号与系统专家刘琦编著的 MATLAB 信号与系统应用教程。
该书通过大量的仿真例子和 MATLAB 代码,详细介绍了信号与系统理论在 MATLAB 中的应用。
书中还包括了对信号处理工具箱和控制系统工具箱的介绍,使读者能够更好地应用 MATLAB 进行信号与系统的建模、仿真和分析。
3. 《MATLAB信号与系统实验教程》该书主要是按照实验的方式来学习信号与系统。
它从基本信号的产生与表示开始,介绍了常见的信号与系统模型,并通过 MATLAB 可视化和仿真实验帮助读者更直观地理解信号与系统的概念和原理。
书中还提供了丰富的 MATLAB 实验案例,如系统的频域和时域表示、信号的采样与重构、滤波器设计等,帮助读者巩固理论知识,提高实际操作能力。
在选择信号与系统的 MATLAB 书籍时,我们可以根据自己的学习需求和水平来进行选择。
如果是初学者,可以选择内容易懂、带有大量MATLAB 实例和案例的教材;如果是深入学习和研究该领域的同学,可以选择更加专业和深入的教材。
学习使用MATLAB进行信号处理和仿真信号处理是一门重要的学科,它在许多领域中发挥关键作用,包括通信、图像处理、生物医学工程等。
而MATLAB作为一个功能强大的编程软件,具备丰富的信号处理和仿真工具,因此被广泛应用于信号处理领域。
本文将重点介绍如何学习使用MATLAB进行信号处理和仿真。
一、MATLAB入门要使用MATLAB进行信号处理和仿真,首先需要对MATLAB有一定的了解。
MATLAB是一种高级计算机语言,可用于数值计算、可视化和编程。
首先,我们需要学习MATLAB的基本语法和特点,包括变量的定义和操作、矩阵运算、函数的定义和调用等。
其次,熟悉MATLAB的常用工具箱,如信号处理工具箱和控制系统工具箱,它们提供了丰富的函数和算法,方便进行信号处理和仿真。
二、信号的表示与分析在信号处理中,首先需要了解信号的表示与分析方法。
MATLAB提供了多种表示信号的方法,包括时域分析和频域分析。
时域分析是通过观察信号在时间上的变化来研究信号的性质,常用的时域分析方法有时域图形显示、自相关函数和互相关函数等。
频域分析则是将信号转换到频域进行分析,常用的频域分析方法有傅里叶变换和功率谱密度估计等。
学习使用MATLAB进行信号的时域和频域分析,可以更好地理解和处理信号。
三、滤波器设计与应用滤波器是信号处理中非常常见和重要的工具。
它可以通过选择性地通过或抑制特定频率的信号,对信号进行处理。
MATLAB提供了丰富的滤波器设计和应用函数,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
我们可以利用MATLAB进行滤波器的设计、参数的调整和滤波器效果的评估等工作。
熟练掌握MATLAB中滤波器设计与应用的方法,对信号处理和仿真工作具有重要意义。
四、信号处理应用实例学习信号处理和仿真离不开实际应用实例的学习。
在这一章节中,将以几个具体的信号处理应用实例来展示MATLAB的具体使用。
比如,在通信领域中,我们可以利用MATLAB进行信号调制、解调和信道编码等工作。
“信号与系统”Matlab实验仿真教学系统设计作者:张尤赛,马国军,黄炜嘉,周稳兰来源:《现代电子技术》2010年第18期摘要:针对“信号与系统”课程硬件实验教学不够深入和灵活的缺点,在分析理论教学和工程实际需求的基础上,利用Matlab和Simulink,建立了“信号与系统”实验仿真教学系统,并从系统设计、内容设计、界面设计、开发工具、二次开发等五个方面对该系统进行了阐述。
实验教学表明,该系统可以克服硬件实验系统的局限性,加深和拓宽了实验内容和实验层次,增强了实验的灵活性,有利于培养学生的实验动手能力和创新能力。
关键词:信号与系统; Matlab; 实验仿真教学; Simulink中图分类号:TN911.7-34; G642.4文献标识码:A文章编号:1004-373X(2010)18-0057-03Design of Mtalab Experimental Simulation Teaching System in Signals and SystemsZHANG You-sai, MA Guo-jun, HUANG Wei-jia, ZHOU Wen-lan(School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China)Abstract: Aiming at the disadvantages of hardware experimental teaching in Signals and Systems, the experimental simulation teaching system of Signals and Systems based on Matlab and Simulink is established by emphasizing experimental teaching requirements of theoretical teaching and actual engineering. Thus, the system design, content design, interface design, development tools and repeatedly development are studied respectively. The effects of experimental teaching show that it overcomes the limitation of hardware experiment, expands experimental contents and level, improves students hands-on ability and comprehensive quality.Keywords: signals and systems; Matlab; experimental simulation teaching; Simulink0 引言信号与系统的基本概念、基本理论与分析方法在不同学科、专业之间有着广泛应用和交叉渗透[1]。
信号与系统MATLAB仿真——信号及其运算1. 知识回顾(1)信号的分类:确定信号与随机信号;周期信号与⾮周期信号;周期信号在时间上必须是⽆始⽆终的f(t)=f(t+T)f[k]=f[k+N]连续时间信号和离散时间信号;连续信号是指在信号的定义域内,除若⼲个第⼀类间断点外,对于任意时刻都由确定的函数值的信号离散信号是指在信号的定义域内,只在某些不连续规定的时刻给出函数值,⽽在其他时刻没有给出函数的信号能量信号、功率信号与⾮功率⾮能量信号;时限与频限信号;物理可实现信号。
(2)信号能量:E=limT→∞∫T−T f2(t)dtP=limT→∞12T∫T−Tf2(t)dtE=limN→∞N∑k=−N|f[k]|2P=limN→∞12N+1N∑k=−N|f[k]|2能量信号:0<E<∞,P=0;功率信号:0<P<∞,E=∞。
(3)冲激函数的性质加权特性(筛选特性):f(t)δ(t−t0)=f(t0)δ(t−t0)取样特性:∫+∞−∞f(t)δ(t−t0)=f(t0)偶函数:f(t)=f(−t)展缩特性:δ(at)=1|a|δ(t)δ(at−t0)=1|a|δ(t−t0a)导数及其特性。
(4)正弦两个频率相同的正弦信号相加,即使其振幅和相位各不相同,但相加后结果仍是原频率的正弦信号;若⼀个正弦信号的频率是另⼀个正弦信号频率的整数倍时,则合成信号是⼀个⾮正弦周期信号,其周期等于基波的周期。
正弦型序列:f[k]=A sin(Ω0k+φ)2π/Ω0是正整数:周期序列,周期为N;2π/Ω0为有理数,2π/Ω0=N/m:周期序列,周期N=m(2π/Ω0);2π/Ω0为⽆理数:⾮周期序列,但包络仍为正弦函数。
(5)抽样信号Sa(t)=sin t t偶函数;Sa(0)=1;t=kπ为其零点;∫+∞−∞Sa(t)dt=π;limt→±∞Sa(t)=0。
(6)信号的分解分解为直流分量与交流分量;奇偶分解;分解为实部和虚部;分解为基本信号的有限项之和;因⼦分解;连续信号分解为矩形脉冲序列;正交分解。
信号与系统卷积的原理及应用matlab实验一、信号与系统基础概念信号是指随时间或空间变化的物理量,可以是电压、电流、声音等。
系统是指对输入信号进行处理的设备或算法,可以是滤波器、放大器等。
二、卷积的定义卷积是一种信号处理方法,用于描述一个信号经过另一个信号响应后产生的输出。
数学上,卷积可以表示为两个函数之间的积分运算,即:y(t) = ∫x(τ)h(t-τ)dτ其中,y(t)表示输出信号,x(t)表示输入信号,h(t)表示系统的单位响应。
三、卷积定理卷积定理是指在频域中进行卷积运算时,等价于对两个函数进行乘法运算后再进行逆变换。
即:F{f*g} = F{f}·F{g}其中,f和g分别为两个函数,在频域中表示为F{f}和F{g}。
四、离散卷积与离散卷积定理在数字信号处理中,使用离散卷积来描述一个序列经过另一个序列响应后产生的输出序列。
离散卷积可以表示为:y[n] = ∑x[k]h[n-k]其中,y[n]表示输出序列,x[k]表示输入序列,h[n-k]表示系统的单位响应。
离散卷积定理是指在频域中进行离散卷积运算时,等价于对两个序列进行乘法运算后再进行逆变换。
即:DFT{f*g} = DFT{f}·DFT{g}其中,f和g分别为两个序列,在频域中表示为DFT{f}和DFT{g}。
五、matlab实验1. 实验目的通过matlab实现离散卷积的计算,并观察离散卷积定理的效果。
2. 实验步骤(1)生成两个长度为N的随机序列x和h。
(2)使用matlab自带函数conv计算x和h的离散卷积y1,并绘制其图像。
(3)将x和h分别进行N点FFT变换得到X和H,在频域中计算它们的乘积Y2=X·H。
(4)将Y2进行N点IFFT变换得到y2,并绘制其图像。
(5)比较y1和y2的差异,观察离散卷积定理的效果。
3. 实验结果与分析实验结果如下图所示:从图中可以看出,y1和y2基本重合,说明离散卷积定理在频域中成立。
信号与系统实验指导书(MATLAB仿真)目录实验一MATLAB 基本应用 (2)实验二信号的时域表示 (7)实验三连续信号卷积 (11)实验四典型周期信号的频谱表示 (18)实验五傅立叶变换性质研究 (23)实验六离散信号分析 (26)实验七离散系统的Z域分析 (29)Matlab相关符号及函数说明 (37)实验一MATLAB 基本应用一、实验目的:学习MATLAB的基本用法,了解 MATLAB 的目录结构和基本功能以及MATLAB在信号与系统中的应用。
二、实验内容:例一已知x的取值范围,画出y=sin(x)的图型。
参考程序:x=0:0.05:4*pi;y=sin(x);plot(y)例二计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。
z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,用subplot函数绘图。
参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表示1、指数信号:指数信号Ae at在MATLAB中可用exp函数表示,其调用形式为:y=A*exp(a*t) (例取A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;注:grid on是一个函数,表示在画图的时候添加网格线。
信号与系统的MATLAB 仿真一、信号生成与运算的实现1.1 实现)3(sin )()(π±===t ttt S t f a )(sin )sin()sin(sin )()(t c t t t t t t t S t f a '=''====ππππππ m11.mt=-3*pi:0.01*pi:3*pi; % 定义时间范围向量t f=sinc(t/pi); % 计算Sa(t)函数 plot(t,f); % 绘制Sa(t)的波形 运行结果:1.2 实现)10()sin()(sin )(±===t tt t c t f ππ m12.mt=-10:0.01:10; % 定义时间范围向量t f=sinc(t); % 计算sinc(t)函数plot(t,f); % 绘制sinc(t)的波形 运行结果:1.3 信号相加:t t t f ππ20cos 18cos )(+=m13.msyms t; % 定义符号变量tf=cos(18*pi*t)+cos(20*pi*t); % 计算符号函数f(t)=cos(18*pi*t)+cos(20*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果:1.4 信号的调制:t t t f ππ50cos )4sin 22()(+=m14.msyms t; % 定义符号变量tf=(2+2*sin(4*pi*t))*cos(50*pi*t) % 计算符号函数f(t)=(2+2*sin(4*pi*t))*cos(50*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果:1.5 信号相乘:)20cos()(sin )(t t c t f π⋅=m15.mt=-5:0.01:5; % 定义时间范围向量f=sinc(t).*cos(20*pi*t); % 计算函数f(t)=sinc(t)*cos(20*pi*t) plot(t,f); % 绘制f(t)的波形 title('sinc(t)*cos(20*pi*t)'); % 加注波形标题 运行结果:二、系统时域的仿真分析2.1 实现卷积)(*)(t h t f ,其中:)2()()()],1()([2)(--=--=t t t h t t t f εεεε m21.mp=0.01; % 取样时间间隔 nf=0:p:1; % f(t)对应的时间向量 f=2*((nf>=0)-(nf>=1)); % 序列f(n)的值nh=0:p:2; % h(t)对应的时间向量 h=(nh>=0)-(nh>=2); % 序列h(n)的值 [y,k]=sconv(f,h,nf,nh,p); % 计算y(t)=f(t)*h(t) subplot(3,1,1),stairs(nf,f); % 绘制f(t)的波形 title('f(t)');axis([0 3 0 2.1]);subplot(3,1,2),stairs(nh,h); % 绘制h(t)的波形 title('h(t)');axis([0 3 0 1.1]);subplot(3,1,3),plot(k,y); % 绘制y(t)=f(t)*h(t)的波形 title('y(t)=f(t)*h(t)');axis([0 3 0 2.1]);子程序 sconv.m% 此函数用于计算连续信号的卷积y(t)=f(t)*h(t) function [y,k]=sconv(f,h,nf,nh,p)% y:卷积积分y(t)对应的非零样值向量 % k:y(t)对应的时间向量 % f:f(t)对应的非零样值向量 % nf:f(t)对应的时间向量 % h:h(t)对应的非零样值向量 % nh:h(t)对应的时间向量 % p:取样时间间隔y=conv(f,h); % 计算序列f(n)与h(n)的卷积和y(n) y=y*p; % y(n)变成y(t)left=nf(1)+nh(1) % 计算序列y(n)非零样值的起点位置 right=length(nf)+length(nh)-2 % 计算序列y(n)非零样值的终点位置 k=p*(left:right); % 确定卷积和y(n)非零样值的时间向量 运行结果:2.2 实现卷积)(*)(t h t f ,其中:)()()],2()([2)(t e t h t t t f tεεε-=--= m22.mp=0.01; % 取样时间间隔 nf=0:p:2; % f(t)对应的时间向量 f=2*((nf>=0)-(nf>=2)); % 序列f(n)的值nh=0:p:4; % h(t)对应的时间向量 h=exp(-nh); % 序列h(n)的值 [y,k]=sconv(f,h,nf,nh,p); % 计算y(t)=f(t)*h(t) subplot(3,1,1),stairs(nf,f); % 绘制f(t)的波形 title('f(t)');axis([0 6 0 2.1]);subplot(3,1,2),plot(nh,h); % 绘制h(t)的波形 title('h(t)');axis([0 6 0 1.1]);subplot(3,1,3),plot(k,y); % 绘制y(t)=f(t)*h(t)的波形 title('y(t)=f(t)*h(t)');axis([0 6 0 2.1]);运行结果:2.3 设方程 )(2)(6)(5)('''t e t y t y t y tε-=++,试求零状态响应)(t y m23.m :yzs=dsolve('D2y+5*Dy+6*y=2*exp(-t)','y(0)=0,Dy(0)=0') ezplot(yzs,[0 8]); 运行结果:yzs =exp(-t)+exp(-3*t)-2*exp(-2*t) 即:)()2()(32t e e et y t t tε---+-=2.4 已知二阶系统方程)(1)(1)()('''t LCt u LC t u L R t u c c δ=++对下列情况分别求)(t h ,并画出其波形。
a. F C H L R 3/1,1,4==Ω= b. F C H L R 1,1,2==Ω= c. F C H L R 1,1,1==Ω=d. F C H L R 1,1,0==Ω=m24.m:R=input('电阻R='); % 以交互方式输入电阻R 的值 L=input('电感L='); % 以交互方式输入电阻L 的值 C=input('电容C='); % 以交互方式输入电阻C 的值 b=[1/(L*C)];a=[1 R/L 1/(L*C)]; impulse(b,a); 运行结果:a. 电阻R=4 电感L=1 电容C=1/3b. 电阻R=2 电感L=1 电容C=1c. 电阻R=1 电感L=1 电容C=1d. 电阻R=0 电感L=1 电容C=1三、频域仿真分析3.1 如图所示周期矩形脉冲,试求其幅度谱。
f(t)-0.50.5t0…… (1)43.5 4.5-4-4.5-3.5m31.m : clear allsyms t n T tao A T=4;A=1;tao=1;f=A*exp(-j*n*2*pi/T*t);fn=int(f,t,-tao/2,tao/2)/T; % 计算傅立叶系数 fn=simple(fn); % 化简n=[-20:-1,eps,1:20]; % 给定频谱的整数自变量,eps 代表0 fn=subs(fn,n,'n'); % 计算傅立叶系数对应各个n 的值 subplot(2,1,1),stem(n,fn,'filled'); % 绘制频谱line([-20 20],[0 0]); % 在图形中添加坐标线 title('周期矩形脉冲的频谱');subplot(2,1,2),stem(n,abs(fn),'filled'); % 绘制频谱 title('周期矩形脉冲的幅度谱'); axis([-20 20 0 0.3]); 运行结果:3.2 如图所示三角波信号,即:22,21)(≤≤--=t t t f ,试求其频谱)(ωFf(t)t-221m32.m :syms t w f ft; % 定义符号变量 f=(1-(abs(t)/2)); % 三角波信号ft=f*exp(-j*w*t); % 计算被积函数 F=int(ft,t,-2,2); % 计算傅立叶变换F(w) F=simple(F);F % 化简subplot(2,1,1),ezplot(f,[-2 2]); % 绘制三角波信号 axis([-3 3 0 1.1]);title('三角波信号');subplot(2,1,2),ezplot(abs(F),[-8:0.01:8]); % 绘制三角波信号的频谱 title('三角波信号的频谱'); 运行结果:F =-(cos(2*w)-1)/w^2 即:)(2)(sin 2)2cos(1)(2222ωωωωωωa S F ==-=3.3 二阶低通滤波器特性为:⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=2111)(ωωωωωQ j H即:2020111)(⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=ωωωωωQ H 和⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--=20011arctan )(ωωωωωϕQ 令21=Q 和1时,分别求幅频特性和相频特性。
m33.mQ=input('输入Q='); % 以交互方式输入Q normalizedw=linspace(0.1,10,100);H=1./(1-normalizedw.^2+j*normalizedw/Q); % 二阶低通滤波器的频率特性表达式 subplot(1,2,1),plot(normalizedw,abs(H)); % 绘制幅频特性曲线 title('幅频特性曲线');gridsubplot(1,2,2),plot(normalizedw,angle(H)); % 绘制相频特性曲线 title('相频特性曲线');grid 运行结果: 输入Q=1/sqrt(2)输入Q=13.4 三阶低通滤波器特性为:1)(2)(3)(1)(23+++=ωωωωj j j H a. 求幅频特性)(ωH 和相频特性)(ωϕb. 求该系统的冲激响应)(t hm34a.m : w=0:0.01:5;H=1./((j*w).^3+3*(j*w).^2+2*j*w+1); % 三阶低通滤波器的频率特性表达式 subplot(1,2,1),plot(w,abs(H)); % 绘制幅频特性曲线 title('幅频特性曲线');grid;axis tight;subplot(1,2,2),plot(w,angle(H)); % 绘制相频特性曲线 title('相频特性曲线');grid;axis tight; 运行结果:m34b.m :b=[1]; % 分子多项式系数 a=[1 3 2 1]; % 分母多项式系数 impulse(b,a); % 冲激响应h(t) 运行结果:3.5 脉冲采样的实现)()()(t p t S t f a ⋅= 其中)(t p 的波形如下:p(t)-0.20.20.40.81 1.4-0.4-0.8-1-1.4t0…… (1)m35.mt=-3*pi:0.01:3*pi; % 定义时间范围向量 s=sinc(t/pi); % 计算Sa(t)函数 subplot(3,1,1),plot(t,s); % 绘制Sa(t)的波形p=zeros(1,length(t)); % 预定义p(t)的初始值为0 for i=16:-1:-16p=p+rectpuls(t+0.6*i,0.4); % 利用矩形脉冲函数rectpuls 的平移来产生宽度为0.4,幅度为1的矩形脉冲序列p(t) endsubplot(3,1,2),stairs(t,p); % 用阶梯图形表示矩形脉冲 axis([-10 10 0 1.2]); f=s.*p;subplot(3,1,3),plot(t,f); % 绘制f(t)=Sa(t)*p(t)的波形 运行结果:3.6 分析如图所示三角信号的采样过程)(tTδ)(tyf(t)-0.50.5-Ts TsTs=0.2s||21)(ttf-=a. 画出)(tf的频谱图)(ωFb. 画出)(1ty的频谱图)(1ωYc. 画出)(ty的频谱图)(ωYm36.m:syms t w f; % 定义符号变量f=(1-2*abs(t))*exp(-j*w*t); % 计算被积函数F=int(f,t,-1/2,1/2); % 计算傅立叶系数F(w)F=simple(F);F % 化简subplot(3,1,1), % 绘制三角波的幅频特性曲线F(w)low=-26*pi;high=-low; % 设置w的上界和下界ezplot(abs(F),[low:0.01:high]);axis([low high -0.1 0.5]); xlabel('');title('三角波的频谱');subplot(3,1,2), % 绘制经过截止频率为4*pi低通滤波器后的频谱Y1(w) ezplot(abs(F),[-4*pi:0.01:4*pi]);axis([low high -0.1 0.5]); xlabel('');title('低通滤波后的频谱');% 采样信号的频谱是原信号频谱的周期延拓,延拓周期为(2*pi)/Ts% 利用频移特性F[f(t)*exp(-j*w0*t)]=F(w+w0)来实现subplot(3,1,3); % 绘制采样后的频谱Y(w)Ts=0.2; % 采样信号的周期w0=(2*pi)/Ts; % 延拓周期10*pifor k=-2:2ft=f*exp(-j*w0*k*t);FT=int(ft,t,-1/2,1/2);ezplot((1/Ts)*abs(FT),[(-4*pi-k*w0):0.01:(4*pi-k*w0)]);hold onendaxis([low high -0.1 2.5]); xlabel(''); title('采样后的频谱'); 运行结果:F =-4*(cos(1/2*w)-1)/w^2即:)4(21))21cos(1(4)(22ωωωωa S F =-=四、复频域仿真分析4.1 部分分式展开:ss s s s F 5212)(23+++= m41.m b=[2 1]; a=[1 2 5 0];[r p k]=residue(b,a) 运行结果: r =-0.1000 - 0.4500i -0.1000 + 0.4500i 0.2000 p =-1.0000 + 2.0000i -1.0000 - 2.0000i 0 k =[ ] 故 sj s j j s j s F 2.0)21(45.01.0)21(45.01.0)(+---+-++----=4.2 求拉氏变换 a. t et f tωcos )(-=b. )(3)(2t e t f tε-=m42.msyms t w % 指定t 和W 为符号变量 fat=exp(-t)*cos(w*t); fbt=3*exp(-2*t); fas=laplace(fat) fbs=laplace(fbt) 运行结果:fas =(s+1)/((s+1)^2+w^2) fbs =3/(s+2) 即:22)1(1)(ω+++=s s s F a ,23)(+=s s F b 4.3 求拉氏反变换a. 10712)(2+++=s s s s F b. 23)(22++=s s s s Fm43.msyms s % 指定s 为符号变量 fas=(2*s+1)/(s^2+7*s+10); fbs=s^2/(s^2+3*s+2); fat=ilaplace(fas)fbt=ilaplace(fbs) 运行结果:fat =3*exp(-5*t)-exp(-2*t)fbt =Dirac(t)-4*exp(-2*t)+exp(-t) 即:)()3()(25t e t e t f t a ε---= )()4()()(2t e e t t f t t b εδ--+-+=4.4 零极点分析 a. 542)(2+++=s s s s H ,求零极点并画出零极点图,并求阶跃响应)(t s 和冲击响应)(t h m44a.mb=[1 2]; % 系统函数分子多项式系数 a=[1 4 5]; % 系统函数分母多项式系数 sys=tf(b,a); % 传递函数 H(s) subplot(1,3,1),pzmap(sys); % 绘制零极点图 subplot(1,3,2),step(b,a); % 阶跃响应s(t) subplot(1,3,3),impulse(b,a); % 冲激响应h(t) 运行结果:注:将鼠标移到零极点上即能显示其位置坐标。