第四章 群论和量子力学
- 格式:pptx
- 大小:762.73 KB
- 文档页数:47
群论与哈密顿算符哈密顿算符的变换性质:设哈密顿算符为 ()Hr ,有一函数f (r ), 存在()()()g r H r f r =由于1()()()Rg r P g Rr g R Rr -==()()()g Rr H Rr f Rr =由此得1()()()()()()R R RH r f r p H Rr f Rr p H Rr p f r -== 因此1()()R RH r P H Rr P -= (1-1) 由于11,R E R R E R p p p p p p --==则11RR p p --=这样(1-1)可表示为1()()R RH r p H Rr p -= (1-2) 如果系统在经受一个变换R 之后,哈密顿算符的形式不变,即Rr=r而 ()()HRr H r =则(1-2)变为 ()()R RH r P P H r = 上式表明,当系统的哈密顿算符在R 的做用下不变时,则它与R 相应的函数变换算符P R 对易。
哈密顿算符的群(薛定谔方程的群):使哈密顿算符不变的所有变换{R}组成一个群。
({P R }与{R}一一对应,其组成的群亦是哈密顿算符的群)有了以上结论和定义进行进一步讨论——— 晶体单电子的薛定谔方程是HE ϕϕ=其中 ()22()2Hr V r m=-∇+我们知道V (r )是十分难以精确获得的函数。
但是,由于v (r )的对称性与晶格的对称性是相同的,所以,在晶体的对称性群的作用下,v (r )不变,即R ∈G ,有V (Rr )=V (r )又由于算符2∇亦是不变的,因此()()H Rr H r =这表明晶体的对称群就是晶体单电子薛定谔方程的群。
(晶体单电子薛定谔方程的群的基函数可作为晶体的对称群的基函数)H (r )的本征函数与基函数:(1)H (r )的具有相同本征值的本征函数,构成薛定谔方程群G 的一个表示的基函数——设E 是H (r )的L 重简并的本征值,于是,相应于这个本征值E ,有一套线性无关的本征函数{()}n r ϕ存在,满足方程()(),(1,2,,)n nH r E r n l ϕϕ== 取G 中任一元P R ,作用于上式两边,则()()R n R nH P r EP r ϕϕ= 上式表明,函数()R n P r ϕ同样也是H (r )的具有本征值E 的一个本征函数,由于E 是L 重简并的,所以,本征函数()R n P r ϕ必然是L 个本征函数{()}n r ϕ的线性组合,即1()()()lR n m nm m P r D R r ϕϕ==∑ (1-3)对每一个n (1—L )都成立。
群论及其在物理学中的应用1. 群论的定义和基本概念群论是一种研究代数结构的数学分支,其中的群是一个由元素和一个二元操作组成的代数结构。
群的核心理念是封闭性,也就是说,任何两个群的元素的乘积都必须属于该群内。
群还具有唯一的单位元素,让任何元素加上单位元素都等于该元素本身;并且群中任何元素都有一个相应的逆元素,使得该元素和它的逆元素的乘积等于单位元素。
2. 群论在物理学中的应用群论在物理学中有着广泛的应用。
其中最重要的应用之一是研究对称性。
物理学中的许多问题都与对称性有关,例如粒子的自旋,电荷守恒等等。
而这些问题都可以用群论来描述。
在量子场论中,对称性群被广泛用于描述基本粒子之间的相互作用。
另一个群论在物理学中的应用是费米子测度。
费米子是具有半整数自旋的粒子,例如电子,中子等等。
由于费米子有一个独特的量子性质,所以它们的变换规则与量子场论和量子力学中的其他粒子有所不同。
这些规则可以通过对称性群来描述。
3. 群论在宇宙学中的应用群论在宇宙学中也有重要的应用。
宇宙学中的许多问题都与宇宙的结构和演化有关,例如宇宙大尺度结构,星系形成等等。
通过对这些问题的研究,我们可以了解宇宙的形成和演化历程。
群论被广泛用于描述这些宇宙结构的对称性,从而提供了关于宇宙演化的更深入的理解。
4. 群论的未来研究方向未来的群论研究将更加关注代数拓扑的交叉作用。
随着数学的发展和现代物理学和宇宙学的需求,群论的应用和研究将会越来越广泛和深入。
我们可以期待看到更多的新颖应用和创新性方法的发展,让我们更深刻地理解物理学和宇宙学中复杂的现象和问题。
物理学中的群论——三维转动群主讲翦知渐群论-三维转动群第四章三维转动群三维转动群的表示4.1 维转动群的表示§拓扑群和李群42§4.2轴转动群SO (2)§4.3 三维转动群SO (3)§4.4二维特殊幺正群SU (2)§4.1拓扑群和李群连续群的基本概念1拓扑群无限群分为分立无限群和连续无限群有关有限群的理论对于分立无限群来说几乎全部成立定义4.1 连续群的维数, a2, …, a n所标明连续群G的元素由一组实参数a1其中至少有一个参数在某一区域上连续变化,且该组参数对标明群的所有元素是必需的而且足够的则该组参数中连续参数的个数l 称为连续群的维数。
在具体的群中,参数的取法可能不唯一例子如下的线性变换T(a,b)x'= T(a,b)x = ax +b,a,b∈(-∞,+∞), a≠0构成的集合,定义其上的乘法为:T(a1,b1)T(a2,b2)x = T(a1a2, a1b2+b1)x,b b T封闭律是显然的逆元素为T-1(a,b) = T(1/a, -b/a) ,单位元是T(1,0)结合律也容易证明因此{T(a,b)}构成个连续群。
构成一个连续群。
由于群元素的连续性质,需要在群中引入拓扑由于群元素的连续性质需要在群中引入简单说拓扑是个集子集族简单地说,拓扑是一个集合以及它的子集族拓扑学研究的是某个对象在连续变形下不变的性质为简单起见,我们仅讨论其元素可与l 维实内积空间的某个子有对应关系的群有一一对应关系的群集Sl该子集称为参数空间定义4.2 拓扑群群元的乘法法则和取逆法则在群的所有元素处都连续的群,称为拓扑群定义4.3 简单群和混合群拓扑群G的任意两个元素x1和x2在参数空间中如果能用一条或者多条道路连接(道路连通),则该群的参数空间是连通的,该群称为连通群或简单群。
若群的参数空间形成不相连结的若干片,则该群称为混合群。
前者如三维转动群SO(3),后者如三维实正交群O(3)。
群论在量子力学中的应用量子力学是描述微观世界的一种理论框架,它涉及到原子、分子、以及更小尺度的粒子。
在这个领域中,群论作为一种数学工具得到广泛应用。
群论能够帮助我们理解并解决许多与量子力学相关的问题。
本文将探讨群论在量子力学中的应用。
1. 群论的基本概念在谈论群论在量子力学中的应用之前,我们首先需要了解群论的基本概念。
群论是一种抽象代数学的分支,用于研究对象之间的对称性。
群是指由一组元素和一种二元运算构成的代数结构,满足封闭性、结合律、单位元和逆元等性质。
2. 对称性与守恒量在量子力学中,对称性与守恒量密切相关。
对称性描述了系统在变换下的不变性,而守恒量是因为对称性而导致的物理量保持不变。
群论提供了一种系统研究和分类对称性的工具,通过分析体系的群结构,我们可以确定守恒量的性质以及它们之间的关系。
3. 角动量的群表示角动量是量子力学中的重要概念,描述粒子的旋转性质。
通过群论的方法,我们可以分析系统的对称性以及对称操作对应的群表示。
在量子力学中,角动量的群表示是非常重要的工具,可以用来推导粒子的能谱、选择定则等物理现象。
4. 能带理论中的群表示能带理论是固体物理学中重要的理论框架,用于描述电子在晶格结构中的行为。
在能带理论中,群表示提供了一种研究晶体对称性和电子能带性质的方法。
通过将晶体的对称操作与群表示相联系,我们可以解释和预测金属、绝缘体、半导体等材料的电子结构特性。
5. 量子力学中的对称性破缺群论不仅适用于描述对称性,也适用于描述对称性破缺的现象。
在量子力学中,对称性破缺是一种重要的现象,它导致了许多重要的物理效应,如超导性、反常霍尔效应等。
通过群论的方法,我们可以研究对称性破缺的机制以及其对系统性质的影响。
6. 几何相位和拓扑物态几何相位和拓扑物态是现代量子力学研究的热点领域。
群论在研究几何相位和拓扑物态中发挥了重要作用。
通过群表示和拓扑群等工具,我们可以研究材料的拓扑性质、拓扑不变量等重要概念,为新型材料的设计和发现提供了理论基础。
群论与哈密顿算符哈密顿算符的变换性质:设哈密顿算符为 ()Hr ,有一函数f (r ), 存在()()()g r H r f r =由于1()()()Rg r P g Rr g R Rr -==()()()g Rr H Rr f Rr =由此得1()()()()()()R R RH r f r p H Rr f Rr p H Rr p f r -== 因此1()()R RH r P H Rr P -= (1-1) 由于11,R E R R E R p p p p p p --==则11RR p p --=这样(1-1)可表示为1()()R RH r p H Rr p -= (1-2) 如果系统在经受一个变换R 之后,哈密顿算符的形式不变,即Rr=r而 ()()HRr H r =则(1-2)变为 ()()R RH r P P H r = 上式表明,当系统的哈密顿算符在R 的做用下不变时,则它与R 相应的函数变换算符P R 对易。
哈密顿算符的群(薛定谔方程的群):使哈密顿算符不变的所有变换{R}组成一个群。
({P R }与{R}一一对应,其组成的群亦是哈密顿算符的群)有了以上结论和定义进行进一步讨论——— 晶体单电子的薛定谔方程是HE ϕϕ=其中 ()22()2Hr V r m=-∇+我们知道V (r )是十分难以精确获得的函数。
但是,由于v (r )的对称性与晶格的对称性是相同的,所以,在晶体的对称性群的作用下,v (r )不变,即R ∈G ,有V (Rr )=V (r )又由于算符2∇亦是不变的,因此()()H Rr H r =这表明晶体的对称群就是晶体单电子薛定谔方程的群。
(晶体单电子薛定谔方程的群的基函数可作为晶体的对称群的基函数)H (r )的本征函数与基函数:(1)H (r )的具有相同本征值的本征函数,构成薛定谔方程群G 的一个表示的基函数——设E 是H (r )的L 重简并的本征值,于是,相应于这个本征值E ,有一套线性无关的本征函数{()}n r ϕ存在,满足方程()(),(1,2,,)n nH r E r n l ϕϕ== 取G 中任一元P R ,作用于上式两边,则()()R n R nH P r EP r ϕϕ= 上式表明,函数()R n P r ϕ同样也是H (r )的具有本征值E 的一个本征函数,由于E 是L 重简并的,所以,本征函数()R n P r ϕ必然是L 个本征函数{()}n r ϕ的线性组合,即1()()()lR n m nm m P r D R r ϕϕ==∑ (1-3)对每一个n (1—L )都成立。