量子力学第四章
- 格式:ppt
- 大小:1.27 MB
- 文档页数:108
第四章 表象理论4.1 态的表象变换和态的矩阵表示1.态的表象变换将F 表象中的态函数对力学量算符ˆQ 在F 表象中的本征函数组展开,则展开系数就是在Q 表象中的态函数。
这就是将F 表象中的态函数变换到Q 表象中的态函数的方法。
为了便于求出展开系数,通常要求ˆQ的本征函数组为幺正基组。
以从r 表象变换到Q 表象为例。
r 表象中的态函数为(,)r t ϕ [或()r ϕ]。
设ˆQ的本征值为分立谱Q n ,对应的本征函数为()n r φ 。
当各Q n 都无简并时,(,)r t ϕ 对()n r φ的展开式为:(,)()()n n nr t a t r ϕφ=∑(4.1-1) 若Q n 表示几个对易力学量算符本征值的集合,则上式中的n 应表示几个对应的量子数的集合。
当Q n 存在简并时,展开式为:(,)()()iiin n n r t a t r ϕφ=∑(4.1-2)其中i 为描写简并的角标。
下面只讨论无简并的情况。
在(4.1-1)式中,a n (t)是Q n 与t 的函数,a n (t)相当于a(Q n ,t)的简写。
当Q n 在整个展开系数中变动。
由于Q n 为分立谱,所以函数关系a n (t)-Q n 不是连续的。
a n (t)就是(,)r t ϕ 变换到Q表象中的态函数。
例如,将r表象中的某态函数(,,)r ϕθϕ对2ˆL 与ˆzL 的共同本征函数组(,)lm Y θφ展开: 0(,,)()(,)llm lm l m lr C r Y ϕθφθϕ∞==-=∑∑ (4.1-3)上式相当于(4.1-1)式中的n 表示两个量子数lm 的集合。
上式中的()lm C r 就是在2L 与z L 共同表象中的态函数。
2.本征态的排序本征态的排序可以化为对应的本征值的排序。
若本征值无简并,则参与排序的本征值没有相同者;若本征值有简并,则参与排序的本征值有相同者,其相同本征值的个数应与该本征值的简并度相同。
北京⼤学量⼦⼒学教材第四章第四章量⼦⼒学中的⼒学量第四章⽬录§4.1表⽰⼒学量算符的性质 (3)(1) ⼀般运算规则 (3)(2) 算符的对易性 (5)(3) 算符的厄密性(Hermiticity) (7)§4.2 厄密算符的本征值和本征函数 (10)(1) 厄密算符的本征值和本征函数 (10)(2) 厄密算符的本征值的本征函数性质 (12)§4.3 连续谱本征函数“归⼀化” (15)(1)连续谱本征函数“归⼀化” (15)(2)δ函数 (18)(3)本征函数的封闭性 (22)§4.4 算符的共同本征函数 (24)(1) 算符“涨落”之间的关系 (24)(2) 算符的共同本征函数组 (27)(3) ⾓动量的共同本征函数组―球谐函数 (28)(4) ⼒学量的完全集 (34)§4.5 ⼒学量平均值随时间的变化,运动常数(守恒量),恩费斯脱定理(Ehrenfest Theorem) .36(1) ⼒学量的平均值,随时间变化;运动常数 (36)(2) Vivial Theorem维⾥定理 (37)(3) 能量—时间测不准关系 (38)(4) 恩费斯脱定理(Ehrenfest Theorem) (38)第四章量⼦⼒学中的⼒学量§4.1表⽰⼒学量算符的性质(1) ⼀般运算规则⼀个⼒学量如以算符O表⽰。
它代表⼀运算,它作⽤于⼀个波函数时,将其变为另⼀波函数)z ,y ,x ()z ,y ,x (O=ψ。
它代表⼀个变换,是将空间分布的⼏率振幅从 )z ,y ,x ()z ,y ,x (O→?ψ-=,于是)x (e )x (Odx daψ=ψ-∑∞=ψ-=0n nnn )x (dxd !n )a ( )a x (-ψ= )x (?=即将体系的⼏率分布沿x ⽅向移动距离a .A. ⼒学量算符⾄少是线性算符;量⼦⼒学⽅程是线性齐次⽅程。
由于态叠加原理,所以在量⼦⼒学中的算符应是线性算符。
第四章 量子力学的表述形式(本章对初学者来讲是难点)表象:量子力学中态和力学量的具体表示形式。
为了便于理解本章内容,我们先进行一下类比:矢量(欧几里德空间) 量子力学的态(希尔伯特空间) 基矢),,(321e e e~三维 本征函数,...),...,,(21n ψψψ~无限维任意矢展开∑=ii i e A A任意态展开 ∑=nn n a ψψ),,(z y x e e e),...)(),...,(),((21x x x n ψψψ 取不同坐标系 ),,(ϕθe e e r取不同表象 ),...)(),...,(),((21p C p C p C n ………. ………. 不同坐标之间可以进行变换 不同表象之间可以进行变换由此可见,可以类似于矢量A,将量子力学“几何化”→在矢量空间中建立它的一般形式。
为此,我们将① 引进量子力学的矢量空间~希尔伯特空间; ② 给出态和力学量算符在该空间的表示; ③ 建立各种不同表示之间的变换关系。
最后介绍一个典型应用(谐振子的粒子数表象)和量子力学的三种绘景。
4.1希尔伯特空间 狄拉克符号狄拉克符号“”~类比:),,(z y x A A A欧氏空间的矢量 A→坐标系中的分量 ),,(ϕθA A A r……….)(rψ →表象下的表示)(p C……….引入狄拉克符号的优点:①运算简洁;②勿需采用具体表象讨论。
一、 希尔伯特空间的矢量定义:希尔伯特空间是定义在复数域上的、完备的、线性内积空间,并且一般是无限维的。
1、线性:①c b a =+;②a b λ=。
2、完备性:∑=nn n a a 。
3、内积空间:引入与右矢空间相互共轭的左矢空间∑==↔+nn n a a a a *;)(:。
定义内积:==*ab b a 复数,0≥a a 。
1=a a ~归一化;b a b a ,~0=正交;m n n m δ=~正交归一;)(x x x x '-='δ~连续谱的正交归一。
第4章三维空间中的量子力学4.1 球坐标系中的薛定谔方程向三维情况的推广是直截了当的。
薛定鄂方程为:;i H t∂ψ=ψ∂ [4.1] 由经典能量可以得出哈密顿算符H 1V p p p mV mv z y x +++=+)(21212222 通过标准方法(现在应用于y ,z 以及x ):,x p i x ∂→∂ ,y p i y∂→∂ ,z p i z ∂→∂ [4.2] 或者简洁地写为[4.3]这样[4.4]其中2222222zy x ∂∂+∂∂+∂∂≡∇ [4.5]是直角坐标系中的拉普拉斯算符。
势能V 和波函数ψ现在是(,,)x y z =r 和t 的函数。
在无穷小体元3d dxdydz =r 内发现粒子的几率为23(,)t d ψr r ,归一化条件是231,d ⎰ψ=r [4.6]其中积分是对整个空间进行。
如果势不显含时间,将有一组完备的定态/(,)(),n iE t n n t e ψ-ψ=r r [4.7]其中空间波函数n ψ满足定态薛定谔方程: [4.8]1当可能出现混淆时,我将在算符顶部放一个∧来区分它们与对应的经典力学量。
本章中不会有很多场合会出现这种混淆,用∧很麻烦,所以从现在起我不再用它。
(含时)薛定谔方程的一般解是/(,)(),n iE t n n t c e ψ-ψ=∑r r [4.9]其中常数n c 由初始波函数(,0)ψr 用通常的方法确定。
(假如势允许连续态,那么4.9式中的求和变为积分。
)*习题4.1(a ) 求出算符r 和p 的各分量之间的正则对易关系:[,]x y ,[,]y x p ,[,]x x p ,[,]y z p p 等等。
答案:[,][,]i j i j ij r p p r i δ=-= ,[,][,]0i j i j r r p p ==, [4.10]这里指标表示,,x y z , , , x y z r x r y r z ===。
(b ) 证明三维情况下的Ehrenfest 定理:1,d dt m =p 和 .d V dt=-∇p [4.11] (当然,上面每个式子表示三个方程—一个分量一个)。
第四章:力学量用算符表示(2)证明以下诸式成立:(1)(证明)根据坐标分角动量对易式为了求证该矢量关系式,计算等号左方的矢量算符的x分量。
以及看到由于轮换对称性,得到特征的公式。
(2)(证明)证法与(1)类似,但需先证分量与分量的对易律同理可证明其他轮换式,由此得普通式取待证的公式等号左方的x 分量,并用前一式加以变形:根据轮换对称性,证明待证式成立。
(3)注意 与x 没有共同坐标。
(4)注意没有共同坐标,因此可以对易即,故)()(2222z y x x z y l l p p l l A +-+=zz x x z z x x z z y y x x y y x x y y x x x x y x x y l l p p l l p p l l l l p p l l p p l l l p p l l p p l )()()()(2222-+-+-+-=-+-=z x z x z z y x y x y y l p l p l l l p l p l l ],[],[],[],[+++=}{z y y z y z z y l p p l l p p l hi ++--= )}(){(y z z y y z z y p l p l l p l p hi ---=})(){(x x p l l p hi*-*=(3) l为粒子角动量。
F 为另一力学量,证明: )(],[pF p r F r hi F l ∂∂*+∂∂*-=(6)证明是厄密算符证明)本题的算符可以先行简化,然后判定其性质是厄密算符,因此原来算符也是厄密的。
另一方法是根据厄密算符的定义:用于积分最后一式: 前式=说明题给的算符满足厄密算符定义。
(7)证(A 等是实数)是厄密算符(证明)此算符 F( ) 不能简化,可以用多次运算证明,首先假定已经证明动量是厄密算符,则运用这个关系于下面的计算:τϕτψτϕτψd P A d P F n nˆ)ˆ(∑•≡•⎰⎰⎰⎰⎰⎰⎰⎰⎰•∑=>ττϕψd PA n nn n ˆ0⎰⎰⎰-•∑=τϕψd P PA n n )ˆ(ˆ1 ⎰⎰⎰-•∑=τϕψd P PA n n )ˆ()ˆ(1 ⎰⎰⎰-•∑=τϕψd P PP A n n )ˆ(ˆ)(2 τϕψd P P P PA n n )ˆ(ˆ)ˆˆ(3-•∑= ⎰⎰⎰-•∑=τϕψd P P PA n n )ˆ(ˆ)ˆ(32 τϕψd P P PA n n )ˆ(ˆ)ˆ(42-•∑= ⎰⎰⎰-•∑=τϕψd P P PA n n )ˆ(ˆ)ˆ(42 ⎰⎰⎰•=ττϕψd PF ])ˆ([ )ˆ(PF 满足厄密算符的定义。