采用熔断器保护电气设备控制回路分析
- 格式:docx
- 大小:21.89 KB
- 文档页数:9
电气系统中的基本保护
(1)短路保护:防止用电设备(电动机、接触器等)短路而产生大电流冲击电网,损坏电源设备或保护用电设备突然流过短路电流而引起用电设备、导线和机械上的严重损坏。
采用的电器一般有熔断器、自动断路器等。
原理:熔断器或自动断路器串入被保护的电路中,当电路发生短路或严重过载时,熔断器的熔体部分自动迅速熔断,自动断路器的过电流脱钩器脱开,从而切断电路,使导线和电器设备不受损坏。
(2)过载保护:防止用电设备(如电动机等)长期过载而损坏用电设备。
采用的电器一般有热继电器、自动断路器等。
原理:热继电器的线圈接在电动机的回路中,而触点接在控制回路中。
当电动机过载时,长时间的发热使热继电器的线圈动作,从而使触点动作,断开控制回路,使电动机脱离电网。
(3)零压(或欠电压)保护:防止因电源电压的消失或降低引起机械设备停止运行,以及当故障消失后,在没有人工操作的情况下,设备自动起动运行而可能造成的机械或人身事故。
熔断器短路保护熔断器具有良好短路保护作用。
熔断器不仅具有体积小、结构简单、维护方便、价格低廉的优点, 而且分断能力强, 具有很强的限流作用。
在系统设计中, 如果采用熔断器作短路保护, 则可大大降低短路电流对系统所产生的动稳定、热稳定要求, 使系统设计更经济。
尽管目前塑壳断路器及微型断路器的分断能力强可以安全分断控制回路短路电流, 但由于控制回路的截面较小, 而短路电流乎与主回路的短路电流相同, 故控制回路的热稳定性相对不太容易得到满足。
《通用用电设备配电设计规范》并没有强调控制回路的热稳定校验(由于二次线路较短,可以较为方便地全部更换且损失不大) 。
在没有进行热稳定校验的情况下, 一旦二次线路短路后, 则必须更换二次线路通过短路电流的所有线路。
而在实际工作中, 用电设备的维修人员容易忽视这一点, 在用电设备二次线路短路后仅将短路点处作绝缘包扎, 或仅更换具有短路点的一部分线路而非全部线路。
如二次线路不能满足热稳定性要求, 在第一次二次线短路后, 二次线路通过短路电流的所有线路的绝缘就已经遭到破坏, 而并非仅仅是短路点处。
当用电设备重新投入使用时, 二次线路很容易再次发生短路故障, 故二次线路还是以满足热稳定要求为宜。
而熔断器一般不需要作热稳定校验。
由于熔断器以其自身产生的热量参数确定切断电路时间, 只要合理选用就能保证在短路电流损坏线路绝缘前被切断, 故选用熔断器作为控制回路的保护电器更具有现实意义。
此外,熔断器同断路器相比, 还具有一个可靠性高的优点。
由于断路器结构较复杂, 机械环节多, 因而易发生机械故障, 影响断路器的工作, 而熔断器不存在此情况。
因此,熔断器的短路保护性能优于低压断路器, 更适合于控制回路短路保护。
果控制回路采用低压断路器保护, 由于低压断路器一般不具有明显的断开点, 不宜作为隔离电器, 根据《通用用电设备配电设计规范》( GB50055O93) 第21611 条规定, 还必须在低压断路器前侧加设隔离电器。
《电器与可编程控制器应用技术》课后习题参考答案第一篇习题1.单相交流电磁机构为何要设置短路环?它的作用是什么?三相交流电磁铁是否装设短路环?答:(1)、由于交流接触器铁心的磁通是交变的,故当磁通过零时,电磁吸力也为零,吸合后的衔铁在反力弹簧的作用下将被拉开,磁通过零后电磁吸力又增大,当吸力大于反力时,衔铁又被吸合。
这样,随着交流电源频率的变化,衔铁产生强烈振动和噪声,甚至使铁心松散。
(2)、当交变的磁通穿过短路环所包围的面积S2在环中产生涡流时,此涡流产生的磁通φ2在相位上落后于短路环外铁心截面S1中的磁通φ1,由φ1、φ2产生的电磁吸力为F1、F2,作用在衔铁上的合成电磁吸力是F1+F2,只要此合力始终大于其反力,衔铁就不会产生振动和噪声。
(3)、由于三相电流电磁铁的电磁吸力三相本身具有相位差,其电磁吸力为一恒定值,故无需设置分磁环。
2.从结构特征如何区分交流、直流电磁机构?答:(1)、交流:铁心用硅钢片冲压而成(减少铁损),线圈做成短而粗的圆筒状绕在骨架上(便于散热)。
(2)、直流:铁心用整块钢制成(方便加工),线圈绕制成长而薄的圆筒状(便于散热)。
3.交流接触器线圈通电后,衔铁长时间被卡死不能吸合,会产生什么后果?答:一般U形铁心的交流电磁机构的励磁线圈通电而衔铁尚未吸合的瞬间,电流将达到衔铁吸合后额定电流的5~6倍,E形铁心电磁机构则达到额定电流的10~15倍,如果衔铁卡住不能吸合时,交流励磁线圈则可能烧毁。
4.交流电磁线圈误接入直流电源,直流电磁线圈误接入交流电源,会发生什么问题?为什么?答:(1)、交流电磁线圈误接入直流电源,由于不存在感抗,则I=U/R,比原来的电流大很多,则线圈容易烧毁。
(2)、直流电磁线圈误接入交流电源,由于存在感抗,则I=u/(R+jX),比原来的电流小很多,可能吸力不够,不能吸合,即使可以吸合也会由于直流电磁系统没有分磁环而发生振动。
同时由于直流电磁系统的铁心由整块钢构成,损耗比较大。
上说法我不能完全同意。
上半句可以这样认为,熔断器的动作时间比断路器要快,其最大的原因在于消防设备的电源取自母线侧,其短路时的分断能力非常高,而微型断路器的分断能力明显不够。
大家知道,消防回路一般均需要采用熔断器来作为短路保护元件,如果使用微型断路器作为短路保护,这会有什么问题吗?如果一定要用,那么应当使用哪种微型断路器呢?我是不推荐使用微型断路器来取代熔断器的。
如果一定要用,那么要用单磁的微型断路器如:S260-M系列,即仅仅具有短路磁脱扣,而不具有过载热脱扣。
在消防回路中很难想象应用了延时过载保护是什么概念。
许多客户就是图微断方便才坚持使用它,却不知道这十分有害。
那这又是为什么呢?我们从消防回路的特点来分析:一)消防回路的供电来源我们知道,消防回路的电源取自各级配电设备的进线端,显然作为消防回路的保护低压开关电器与获取电源处的工况有极其密切的关系。
如果仅考虑低压系统,消防回路的电源取自何处呢?对于低压电网上的一级配电设备,若消防回路的供电对象是进线、母联和三级负荷总开关等主回路的控制回路,则供电对象是电力变压器的低压侧;若供电对象是馈电和电动机主回路的控制回路,则供电对象是系统母线。
对于低压电网的二级配电设备或三级配电设备,例如车间配电设备或配电箱,则一般取自配电设备的进线端。
二)分析对于应用在一级配电设备主进线和母联的消防回路,其电源取自电力变压器的低压侧。
举例:若电力变压器的容量为2000kVA,阻抗电压为6%,经计算可知短路电流的稳态值Ik为48kA。
一般地,主进线断路器的分断能力Icu要大于1.1倍Ik,等于55kA。
由于消防回路也从此点引出,故消防回路的保护开关电器必须满足55kA的短路分断要求。
显然,任何MCB微断也无法满足此分断能力,只能采用熔断器。
根据IEC标准的定义:所有从同一点引出的任何支路,只要连接导线足够短,那么所有接入此点的开关电器其短路分断能力必须一致。
显然母线上的分断也是很高的,那么消防回路的保护电器也必须采用熔断器。
机电设备电气控制系统中常用的保护措施及作用
机电设备电气控制系统中常用的保护措施主要包括短路保护、过载保护和欠压保护。
这些保护措施的作用如下:
1. 短路保护:当电路发生短路时,电流会迅速增加,可能会损坏设备或电线。
短路保护装置(如熔断器或断路器)会在电流超过预定值时自动断开电路,以防止设备损坏和火灾发生。
2. 过载保护:当电机负荷过大时,电流也会增加,可能导致电机过热甚至烧毁。
过载保护装置通常会检测电机的运行电流,当电流超过预定值时,装置会自动切断电源,以防止电机过热。
3. 欠压保护:当电压过低时,电机的输出功率会降低,可能导致设备无法正常运行。
欠压保护装置会在电压低于预定值时自动切断电源,以保护电机和设备不受损坏。
这些保护措施可以有效地保护机电设备电气控制系统中的设备,防止因电流过大、电压过低或电机过载等问题而造成的损坏。
10kV跌落式熔断器的故障分析及管理对策摘要:电力系统中,10kV跌落式熔断器是一种关键设备,用于保护电力线路和电气设备免受过载和短路等故障的影响。
然而,由于长期使用和外界因素的影响,熔断器可能会出现故障,导致电力系统的安全稳定性受到威胁。
为了提高电力系统的可靠性和稳定性,对10kV跌落式熔断器的故障分析和管理至关重要。
通过对故障的分析,可以确定故障的原因和类型,为后续处理提供依据。
本文将对10kV跌落式熔断器的故障进行深入分析,并提出相应的管理对策,以期为电力系统运维人员提供参考,确保电力系统的安全可靠运行。
关键词:10kV跌落式熔断器;故障分析;管理对策引言本文通过对10kV跌落式熔断器故障原因进行分析,提出了相应的管理对策。
首先,合理选择熔断器型号和参数,确保其符合电路需求。
其次,定期进行检查和测试,及时发现并解决潜在问题。
最后,引入智能化监测和预警系统,实现对熔断器状态的实时监控和管理。
通过以上对策的实施,可以全面提升10kV跌落式熔断器的可靠性和安全性,确保电力系统的安全稳定运行。
1.跌落式熔断器的结构、特点和运行原理跌落式熔断器是一种用于电力系统保护的电器设备,其结构、特点和运行原理如下:结构:跌落式熔断器由熔丝、导体、绝缘材料和操作机构组成。
熔丝通常由铅、锡合金等低熔点材料制成,连接在两个导体之间形成回路。
绝缘材料用于隔离熔丝和外界环境。
操作机构用于控制熔丝的断开和闭合。
特点:跌落式熔断器具有以下几个特点:高可靠性:由于采用了可靠的熔丝材料,跌落式熔断器能够在短时间内断开电路并保护电力系统。
快速动作:当电流超过熔丝的额定值时,熔丝迅速融化,使电路断开,实现快速动作的保护功能。
可替换性:一旦熔丝熔断,可以方便地更换熔丝以恢复电力系统的正常运行。
灵活性:熔丝的额定电流可以根据电路负载需求进行选择和调整,以满足不同电力系统的保护需求[1]。
运行原理:跌落式熔断器的运行原理基于熔丝的熔化现象。
电气控制试题一、填空题1、低压电器通常指工作在交流(1200 )V以下,直流(1500)V以下的电路中,起到连接、(控制)、(保护)和调节作用的电器设备。
2、热继电器是专门用来对连续运行的电动机实现(过载)及(断相)保护,以防电动机因过热而烧毁的一种保护电器,通常是把其(常闭点)触点串接在控制电路中。
3、在电气控制技术中,通常采用(熔断器)或(断路器)进行短路保护。
4、行程开关的工作原理和(按钮)相同,区别在于它不是靠手的按压,而是利用(生产机械运动部件的挡铁碰压)使触头动作。
5、常用的电气制动方式有(反接)制动和(能耗)制动。
6、电动机长动与点动控制区别的关键环节是(自锁)触头是否接入。
7、当电动机容量较大,起动时产生较大的(启动电流),会引起(电网电压)下降,因此必须采用降压起动的方法。
8、对于正常运行在(三角形)连接的电动机,可采用星/三角形降压起动,即起动时,定子绕组先接成(星形),当转速上升到接近额定转速时,将定子绕组联结方式改接成(三角形),使电动机进入(全压正常)运行状态。
9、对于低压整流电路,全波整流后的电压是原电压的( 0.9 )倍,半波整流后的电压是原电压的( 0.45 )倍。
10.大于(45)kw电动机必须使用真空接触器启动。
二、判断1.开关电器在所有电路都可直接接负载。
( X )2.热继电器在电路中既可作短路保护,又可作过载保护。
(X )3.时间继电器之所以能够延时,是因为线圈可以通电晚一些。
(X )4.熔断器的额定电流大于或等于熔体的额定电流。
(√)5.交流接触器通电后,如果铁芯吸合受阻,会导致线圈烧毁。
(√)6.在正反转电路中,用复合按钮能够保证实现可靠联锁。
(√)7.接触器的额定电流指的是线圈的电流(X )8.直流接触器的衔铁有短路环。
(X )9.刀开关可以频繁接通和断开电路。
(X ))10.电气原理图中所有电器的触电都按没有通电或没有外力作用时的开闭状态画出。
(√)11.电动机正反转控制电路为了保证起动和运行的安全性,要采取电气上的互锁控制。
电压互感器熔断器熔断分析变电站的电压互感器是电力系统不可缺少的电气设备,其作用是为测量仪表、计量及保护装置提供电源。
运行中,站内电压互感器的一、二次熔断器经常发生熔断现象。
电压互感器一旦不能正常工作,不仅可能会少计量电能量,使保护失去电源造成断路器拒动或误动,还可能导致无法实现二次监控等问题,直接威胁着电网安全运行。
如果电压互感器熔断器配置不合适,或接地电流过大、时间过长,往往还可能造成电压互感器烧毁。
标签:电压互感器;熔断器;熔断电压互感器经常出现高压熔断器的两相熔断情况,造成电能表的准确计量,而且造成安全自动装置的误动作,严重危及电网的安全可靠运行。
了解高压熔断器熔断原因,根据现场情况正确处理、从根本上解决电压互感器一次保险熔断问题,以保证电网的安全运行。
一、电压互感器熔断器熔断现象电压互感器本身阻抗很小,二次繞组匝数多,而且导线细,所以要求二次侧不能带太大的负荷,一旦二次侧发生短路,电流将急剧增长而烧毁线圈。
因此,电压互感器的一次侧接有高压熔断器保护,二次侧装设熔断器或自动开关保护,二次侧可靠接地,以免在一、二次绝缘损毁时,二次侧出现对地高电压而造成设备损坏、设备壳体带电、人身触电等事故的发生。
(1)站内电压互感器一次熔断器熔断大多是由于系统故障引起,故障时会出现:(1)监察系统报警,并有“电压回路断线”“母线接地”“电压异常”等信号;(2)绝缘监察表熔断相电压指示降低。
(2)站内电压互感器二次熔断器熔断大多是由于二次回路短路引起,故障时发出“电压回路断线”信号,Ⅰ段(或Ⅱ段)“计量电压回路消失”,表计指示熔断相基本为零,其它两相指示不变,有功、无功功率表指示下降,电能表变慢。
二、电压互感器高压熔断器频繁熔断的原因2014年12月24日15∶26分,某XX机组DCS监视画面发电机出口电压UAB和UBC两相较正常运行时20kV有所降低,其值下降为19.3kV。
通知继保人员后对变送器屏的相关电压量进行测量,发现A相、C相二次电压为57.7V,B相电压下降为55.3V左右。
采用熔断器保护电气设备控制回路分析
低压平行集束架空绝缘电缆,是目前国际上新发展的一种最优架空绝缘电缆,它与现用的绞合式线路相比,具有成本低,线路损耗小,架设维护方便,安全可靠等特点。
1、平行集束电线低压架空线路与裸导线线路比较,有很多优点。
与裸导线架空线路相比,集束电线低压架空线路的主要特点如下:
(1)线路电抗小,约为0.1Ω/km是裸导线线路电抗的1/4.可以减少线路电压损耗.
(2)占用空间少,小街巷也能通过,与树木接近时,无须伐树和剪枝。
(3)线路结构简单,金具种类、数量少,施工方便,维护运行方便。
(4)可用较短的电杆,也可省去电杆沿墙架设。
(5)减少火灾危险和触电危险,便于维护管理。
(6)能带电作业。
(7)雷电造成的损失小,事故率约为裸导线线路的1/5。
供电可靠性高,国外报导电杆折断时也能可靠供电。
(8)减少漏电损失,有效防止窃电。
(9)集束电线线路可在分支线上用4×6mm2或4×10mm2的导线构成三相线路供电,这可使用户受电器容量在三相中比较均匀地分配,因而三相负荷比较均匀,使线损降低。
(10)国外报导费用可节约10%~20%。
2、集束电缆低压架空线与裸导线线路的经济比较
因为集束电线在我国使用时间还不长,有些方面统计、测量和研究还不充分,所以下面仅做一个粗略的分析比较。
(1)两种线路的材料价格及综合投资见表1。
表中两种线路同样的电线杆(8米杆),相同截面的导线架设。
表1集束电线线路与裸导线线路投资比较
线路种类
导线费用元/km
金具费用
元/km
施工费用
元/km
线路造价。