第二章 平面力系的简化和平衡
- 格式:ppt
- 大小:1.69 MB
- 文档页数:73
第二章平面力系教学目标:掌握平面力系向一点简化的一般结果和最终结果;掌握平面任意力系的平衡方程;掌握平面特殊力系的平衡方程。
重点、难点:平面力系平衡方程求解力学问题。
学时分配:8学时。
§2-1 平面任意力系的简化一 平面任意力系向一点简化——主矢与主矩设刚体上作用有n 各力1F 、2F 、…、n F 组成的平面任意力系,如图3-2a 所示,在力系所在平面内任取点O 作为简化中心,由力的平移定理将力系中各力矢量向O 点平移,如图3-2b 所示,得到作用于简化中心O 点的平面汇交力系1F '、2F '、…、n F ',和附加平面力偶系,其矩为1M 、2M 、…、n M 。
图3-2平面汇交力系1F '、2F '、…、n F '可以合成为力的作用线通过简化中心O 的一个力RF ',此力称为原来力系的主矢,即主矢等于力系中各力的矢量和。
有∑=''''ni 1=+++=+++=1212i n n RF F F F F F F F 平面力偶系1M 、2M 、…、n M 可以合成一个力偶,其矩为o M ,此力偶矩称为原来力系的主矩,即主矩等于力系中各力矢量对简化中心的矩的代数和。
有∑=ni n o (M =M ++M +M =M 1i o 21)F结论:平面任意力系向力系所在平面内任意点简化,得到一个力和一个力偶,如图所示,此力称为原来力系的主矢,与简化中心的位置无关;此力偶矩称为原来力系的主矩,与简化中心的位置有关。
利用平面汇交力系和平面力偶系的合成方法,可求出力系的主矢和主矩。
如图所示,建立直角坐标系oxy ,主矢的大小和方向余弦为212122)F ()F (=F F =F ni yi ni xi Ry RxR ∑∑==+'+'Rn1i yiRRy R n1i xi R RxF FF F cos ,F F F F )cos ∑∑===''=⋅=''=⋅)((j F i F R R主矩的解析表达式为∑=-=ni xi i yi i o )F y F (x M 1)(R F二 平面任意力系简化结果讨论(1)当00≠='o M ,RF 时,简化为一个力偶。
第二章力系的简化和平衡方程一、填空题1、在平面力系中,若各力的作用线全部,则称为平面汇交力系。
2、求多个汇交力的合力的几何法通常要采取连续运用力法则来求得。
3、求合力的力多边形法则是:将各分力矢首尾相接,形成一折线,连接其封闭边,这一从最先画的分力矢的始端指向最后面画的分力矢的的矢量,即为所求的合力矢。
4、平面汇交力系的合力作用线过力系的。
5、平面汇交力系平衡的几何条件为:力系中各力组成的力多边形。
6、平面汇交力系合成的结果是一个合力,这一个合力的作用线通过力系的汇交点,而合力的大小和方向等于力系各力的。
7、若平面汇交力系的力矢所构成的力多边形自行封闭,则表示该力系的等于零。
8、如果共面而不平行的三个力成平衡,则这三力必然要。
9、在平面直角坐标系内,将一个力可分解成为同一平面内的两个力,可见力的分力是量,而力在坐标轴上的投影是量。
10、合力在任一轴上的投影,等于各分力在轴上投影的代数和,这就是合力投影定理。
11、已知平面汇交力系合力R在直角坐标X、Y轴上的投影,利用合力R与轴所夹锐角a的正切来确定合力的方向,比用方向余弦更为简便,也即tg a= | Ry / Rx | 。
12、用解析法求解平衡问题时,只有当采用坐标系时,力沿某一坐标的分力的大小加上适当的正负号,才会等于该力在该轴上的投影。
13、当力与坐标轴垂直时,力在该坐标轴上的投影会值为;当力与坐标轴平行时,力在该坐标轴上的投影的值等于力的大小。
14、平面汇交力系的平衡方程是两个的方程,因此可以求解两个未知量。
15、一对等值、反向、不共线的平行力所组成的力系称为_____。
16、力偶中二力所在的平面称为______。
17、在力偶的作用面内,力偶对物体的作用效果应取决于组成力偶的反向平行力的大小、力偶臂的大小及力偶的______。
18、力偶无合力,力偶不能与一个_____等效,也不能用一个______来平衡.19、多轴钻床在水平工件上钻孔时,工件水平面上受到的是_____系的作用。
平面力系-平面汇交力系的简化与平衡方程(常用版)(可以直接使用,可编辑完整版资料,欢迎下载)第2章平面力系192.1 平面汇交力系的简化与平衡方程 (19)2.2 力对点之矩合力矩定理 (24)2.3 力偶及其性质 (27)2.4 平面力偶系的合成与平衡方程 (30)2.5 平面一般力系的简化与平衡方程 (32)2.6 物体系统的平衡 (40)*附录Ⅱ:机械应用实例 (49)第2章平面力系本章主要介绍平面力系的简化与平衡问题,平面状态下物系平衡问题的解法。
按照力系中各力的作用线是否在同一平面内,可将力系分为平面力系和空间力系。
若各力作用线都在同一平面内并汇交于一点,则此力系称为平面汇交力系。
按照由特殊到一般的认识规律,我们先研究平面汇交力系的简化与平衡规律。
2.1 平面汇交力系的简化与平衡方程2.1.1 概述设刚体上作用有一个平面汇交力系F1、F2、…、F n,各力汇交于A点(图2-1a)。
根据力的可传性,可将这些力沿其作用线移到A点,从而得到一个平面共点力系(图2-1b)。
故平面汇交力系可简化为平面共点力系。
a )b )图2-1连续应用力的平行四边形法则,可将平面共点力系合成为一个力。
在图2-1b 中,先合成力F 1与F 2(图中未画出力平行四边形),可得力F R1,即 F R1=F 1+ F 2;再将F R1与F 3合成为力F R2,即F R2=F R1+ F 3;依此类推,最后可得F R =F 1+ F 2+…+ F n =∑F i (2-1)式中 F R 即是该力系的合力。
故平面汇交力系的合成结果是一个合力,合力的作用线通过汇交点,其大小和方向由力系中各力的矢量和确定。
因合力与力系等效,故平面汇交力系的平衡条件是该力系的合力为零。
2.1.2力在坐标轴上的投影过F 两端向坐标轴引垂线(图2-2)得垂足a 、b 、a'、b'。
线段ab 和a'b'分别为F 在x 轴和y轴上投影的大小,投影的正负号规定为:从a 到b (或从a'到b')的指向与坐标轴正向相同为正,相反为负。