九、 平面一般力系平衡方程的其他形式
- 格式:doc
- 大小:1.10 MB
- 文档页数:12
平面一般力系的平衡方程的三种形式
平面一般力系的平衡方程有以下三种形式:
1. 矢量和式形式:若平面一般力系中作用力F1、F2、F3、...、Fn与参考点O的连线分别为r1、r2、r3、...、rn,且F1、F2、
F3、...、Fn的和为零,则平衡条件可以表示为F1 + F2 + F3 + ...
+ Fn = 0。
2. 分力和式形式:根据平面一般力系的平衡条件,可以将作用
在此力系上的力分解为水平分力和垂直分力。
平衡条件可以表示为水
平分力的和等于零,即∑Fx = 0;垂直分力的和等于零,即∑Fy = 0。
3. 正负向分式形式:根据平面一般力系的平衡条件,可以选择
合适的坐标系,将力的方向分为正向和负向。
若力Fi与坐标系确定的
正向相背离,则可表示为Fi > 0;若力Fi与坐标系确定的正向相同,则可表示为Fi < 0。
平衡条件可以表示为所有正向力的代数和等于所
有负向力的代数和,即ΣFi > 0 - ΣFi < 0 = 0。
以上是平面一般力系的平衡方程的三种形式。
一、导入由上节课的简化结果可知:若平面一般力系平衡,则作用于简化中心的平面汇交力系和附加力偶也必须同时满足平衡条件。
由此可知,物体在平面一般力系的作用下,既不发生移动,也不发生转动的静力平衡条件为:力系中的所有各力在两个不同方向的X\Y轴上投影的代数和均为零,且力系中各力对平面内任意一点的力矩大代数和也等于零。
二、新授3-2平面一般力系的平衡与应用一、平面一般力系的平衡条件、平衡方程及其应用平面一般力系平衡的充要条件是力系主矢F R/ 和力系对某一点的主矩m o都等于零。
即:F R/ =0,m o =0要使F R/ =0,必须满足:∑F x =0 ∑F y =0要使m o =0,必须满足:∑m o(F)=0于是,平面一般力系的平衡条件可表达为:∑F x =0基本形式∑F y =0∑m o(F)=0 力矩方程平面一般力系有三个独立方程。
例1:钢筋混凝土钢架的受力及支座情况如图。
已知F=10KN,m=15KN.m,钢架自重不计,求支座反力。
平面一般力系平衡必须同时满足三个平衡方程式,这三个方程彼此独立,可求解三个未知量。
因此,平面一般力系平衡的充要条件又可叙述为:力系中所有各力在两个坐标轴上的投影的代数和都等于零,而且力系中所有各力对任一点力矩的代数和也等于零。
解:1、刚架为研究对象,画刚架的受力图, 建立坐标轴2、列平衡方程求解未知力 ∑F x =0 F -F BX =0 F BX =F =10KN∑m A (F )=0 -F ×3-m +F BY ×3=0 F BY =15KN () ∑F y =0 F A +F BY =0 F A =-F BY =-15KN () 二、平面一般力系平衡方程的其他形式 1、二力矩式平衡方程的基本形式并不是唯一的形式,还可以写成其他的形式,它与基本形式的平衡方程是等效的,但往往应用起来会方便一些。
形式:三个平衡方程中有两个力矩方程和一个投影方程00===∑∑∑xBA Fm m如果力系满足0=∑A m 的方程,简化结果就不可能是个合力偶,而只能是合力或平衡;若是合力则合力应通过A 点,同理,力系又满足0=∑B m ,则此合力还应通过B 点,也就是说,力系如果有合力则合力作用为AB 连线,又因为力系还满足=∑xF的方程,则进一步表明力系即使有合力,这合力也只是能与X 轴相垂直,但附加条件是AB 连线不与OX 轴垂直。
第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。
第九讲内容一、平面一般力系平衡方程的其他形式前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。
1.二力矩形式的平衡方程在力系作用面内任取两点A、B及X轴,如图4 —13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即X0M A 0 (4 —6)M B 0式中X轴不与A B两点的连线垂直。
证明:首先将平面一般力系向A点简化,一般可得到过A点的一个力和一个力偶。
若M A 0成立,则力系只能简化为通过A点的合力R或成平衡状态。
如果M B 0又成立,说明R必通过B。
可见合力R的作用线必为AB连线。
又因X 0成立,则R x X 0,即合力R在X轴上的投影为零,因AB连线不垂直X轴,合力R亦不垂直于X轴,由R X 0可推得R 0。
可见满足方程(4 - 6)的平面一般力系,若将其向A点简化,其主矩和主矢都等于零,从而力系必为平衡力系。
2.三力矩形式的平衡方程在力系作用面内任意取三个不在一直线上的点示,则力系的平衡方程可写为三个力矩方程形式,即M A 0M B 0M C 0式中,A B、C三点不在同一直线上。
A B C,如图4—14所4—7)同上面讨论一样,若M A 0和M B 0成立,则力系合成结果只能是通过A、B两点的一个力(图 4 —14)或者平衡。
如果M C 0也成立,则合力必然通过C点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,M e 0才能成立。
因此,力系必然是平衡力系。
综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4 - 5)、式(4 —6)、式(4—7),在解题时可以根据具体情况选取某一种形式。
无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。
任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。
【例4 —7】某屋架如图 4 —15 (a)所示,设左屋架及盖瓦共重P 3kN,右屋架受到风力及荷载作用,其合力P2 7kN , P2与BC夹角为80,试求A、B支座的反力。
1第3章 力系的平衡条件与平衡方程平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程若是一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都别离等于零,即 110()0i nR i nO O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式: 11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或00()0x y OF F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和别离等于零,和各力对任一点的矩的代数和也等于零。
平面汇交力系:2平面汇交力系对平面内任意一点的主矩都等于零,即恒知足()0OMF ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC 为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:一、电动机处于任意位置时,钢索BC 所受的力和支座A 处的约束力;二、分析电动机处于什么位置时。
钢索受力最大,并肯定其数值。
3解:一、选择研究对象以大梁为研究对象,对其作受力分析,并成立图示坐标系。
成立平衡方程取A 为矩心。
按照 ()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin 30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+ 由xF =∑cos 0Ax TB F F θ-=2()cos303()2QP P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=4122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽可能选在两个或多个未知力的交点上,这样成立的力矩平衡方程中将不包括这些未知力;坐标系中坐标轴取向应尽可能与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数量。
第九讲内容一、平面一般力系平衡方程的其他形式前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。
1.二力矩形式的平衡方程在力系作用面内任取两点A 、B 及X 轴,如图4-13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即⎪⎭⎪⎬⎫=∑=∑=∑000B A M M X (4-6) 式中X 轴不与A 、B 两点的连线垂直。
证明:首先将平面一般力系向A 点简化,一般可得到过A 点的一个力和一个力偶。
若0A =M 成立,则力系只能简化为通过A 点的合力R 或成平衡状态。
如果0B =∑M 又成立,说明R 必通过B 。
可见合力R 的作用线必为AB 连线。
又因0=∑X 成立,则0X =∑=X R ,即合力R 在X 轴上的投影为零,因AB 连线不垂直X 轴,合力R 亦不垂直于X 轴,由0X =R 可推得0=R 。
可见满足方程(4-6)的平面一般力系,若将其向A 点简化,其主矩和主矢都等于零,从而力系必为平衡力系。
2.三力矩形式的平衡方程在力系作用面内任意取三个不在一直线上的点A 、B 、C ,如图4-14所示,则力系的平衡方程可写为三个力矩方程形式,即⎪⎭⎪⎬⎫=∑=∑=∑000C B A M M M (4-7)式中,A 、B 、C 三点不在同一直线上。
同上面讨论一样,若0A =∑M 和0B =∑M 成立,则力系合成结果只能是通过A 、B 两点的一个力(图4-14)或者平衡。
如果0C =∑M 也成立,则合力必然通过C 点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,0C =∑M 才能成立。
因此,力系必然是平衡力系。
综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4-5)、式(4-6)、式(4-7),在解题时可以根据具体情况选取某一种形式。
无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。