平面一般力系的平衡
- 格式:doc
- 大小:1.37 MB
- 文档页数:6
平面一般力系的二力矩式平衡方程平面一般力系的二力矩式平衡方程引言在物理学和工程学中,力学的平衡是一个重要的概念。
力学的平衡可以分为平面力系的平衡和空间力系的平衡。
在本文中,我们将讨论平面力系的平衡,并重点关注二力矩式平衡方程。
平面力系的定义和特点平面力系是指作用在一个平面内的一组力。
平面力系具有以下特点:1. 所有的力和力矩都在一个平面内;2. 力系中的力可以同时作用在一个物体的不同点上;3. 力系中的力可能会产生力矩。
力矩的概念力矩是指力对旋转物体造成的影响。
它由两个因素确定:力的大小和作用点与旋转轴的距离。
力矩的大小可以通过以下公式计算:M = Fd其中,M表示力矩,F表示力的大小,d表示力的作用点与旋转轴之间的距离。
力矩的方向可以通过以下规则确定:1. 如果力的作用点在旋转轴上,力矩的大小为零;2. 如果力由旋转轴向外作用,力矩的方向为顺时针方向;3. 如果力由旋转轴向内作用,力矩的方向为逆时针方向。
二力矩式平衡方程的推导在平面力系中,如果力系处于平衡状态,那么力系的合力和合力矩都必须为零。
根据牛顿第一定律,合力为零意味着物体的加速度为零;根据牛顿第二定律,合力矩为零意味着物体的角加速度为零。
设平面力系中共有n个力,分别记为F1, F2, ..., Fn。
考虑到每个力都可以产生力矩,那么每个力产生的力矩之和为:M1 + M2 + ... + Mn = 0力矩的正负号要根据力矩的方向来确定,根据上述力矩的规则,如果力矩是顺时针方向的,那么取正号;如果力矩是逆时针方向的,那么取负号。
根据力矩的计算公式,将每个力的力矩带入上述方程,得到二力矩式平衡方程:F1d1 + F2d2 + ... + Fndn = 0这就是平面力系的二力矩式平衡方程。
应用实例下面通过一个实例来说明如何应用二力矩式平衡方程。
假设有一个悬臂梁,上面有一个重物挂着。
悬臂梁的长度为L,重物的质量为m,重物与悬臂梁的连接处距离悬臂梁固定点的距离为d。
平面一般力系的独立平衡方程个数为
平面一般力系的独立平衡方程个数为3个,平面汇交力系的独立平衡方程数目有3个,分别是两个力的平衡方程和一个力矩平衡方程。
当刚体受到两个力的作用时:其中一个力保持不变,将第二个力的起点平移连接在另一个力的末端,然后连接剩下的一个力的起点和另一个力的末端构成一个三角形。
最后连接的那条边就为两力的合力大小,方向为从一个力的起点到另一个力的末端。
扩展资料:
力系平衡的充要条件
力系的力多边形自行封闭(自行封闭力多边形所得各力的指向是实际指向)。
力系合成的解析法
力在坐标轴上的投影是代数量,已知力的投影,可求得力的大小和方向,力在两个直角坐标轴上的投影与沿两个坐标轴的分力的关系。
分别令∑Fx=0;∑Fy=0;∑M=0.一个力在相互平行且同向的轴上的投影相等。
将一个力矢平行移动,此力在同一轴上的投影值不变,计算力的投影时,常用锐角进行计算,再冠以正负号。
第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。
第九讲内容一、平面一般力系平衡方程的其他形式前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。
1.二力矩形式的平衡方程在力系作用面内任取两点A、B及X轴,如图4 —13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即X0M A 0 (4 —6)M B 0式中X轴不与A B两点的连线垂直。
证明:首先将平面一般力系向A点简化,一般可得到过A点的一个力和一个力偶。
若M A 0成立,则力系只能简化为通过A点的合力R或成平衡状态。
如果M B 0又成立,说明R必通过B。
可见合力R的作用线必为AB连线。
又因X 0成立,则R x X 0,即合力R在X轴上的投影为零,因AB连线不垂直X轴,合力R亦不垂直于X轴,由R X 0可推得R 0。
可见满足方程(4 - 6)的平面一般力系,若将其向A点简化,其主矩和主矢都等于零,从而力系必为平衡力系。
2.三力矩形式的平衡方程在力系作用面内任意取三个不在一直线上的点示,则力系的平衡方程可写为三个力矩方程形式,即M A 0M B 0M C 0式中,A B、C三点不在同一直线上。
A B C,如图4—14所4—7)同上面讨论一样,若M A 0和M B 0成立,则力系合成结果只能是通过A、B两点的一个力(图 4 —14)或者平衡。
如果M C 0也成立,则合力必然通过C点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,M e 0才能成立。
因此,力系必然是平衡力系。
综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4 - 5)、式(4 —6)、式(4—7),在解题时可以根据具体情况选取某一种形式。
无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。
任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。
【例4 —7】某屋架如图 4 —15 (a)所示,设左屋架及盖瓦共重P 3kN,右屋架受到风力及荷载作用,其合力P2 7kN , P2与BC夹角为80,试求A、B支座的反力。
平面一般力系
若力系中各力作用线在同一平面内,既不完全汇交,也不完全平行,称为平面一般力系。
指的是力系中各力的作用线在同一平面内任意分布的力系称为平面一般力系。
又称为平面任意力系。
平面一般力系的平衡条件是;平面一般力系中,所有各力在力系作用的平面内,两个互相垂直的坐标轴上投影的代数和分别等于零。
即平面一般力系平衡的充分必要条件:主矢量和主矩都为零。
其平衡方程为:ΣFx=0ΣFy=0ΣMo(F)=0.
平面力系分为平面汇交力系、平面力偶系、平面任意力系、平面平行力系。
力系合成三角形法则
当刚体受到两个力的作用时:其中一个力保持不变,将第二个力的起点平移连接在另一个力的末端,然后连接剩下的一个力的起点和另一个力的末端构成一个三角形。
最后连接的那条边就为两力的合力大小,方向为从一个力的起点到另一个力的末端。
平面一般力系的平衡条件是
平面汇交力系的平衡条件是力系的力多边形自行封闭,各力作用线在同一平面内的力系称为平面力系,平面力系中各力作用线汇交于一点的力系称为平面汇交力系。
当刚体受到两个力的作用时:其中一个力保持不变,将第二个力的起点平移连接在另一个力的末端,然后连接剩下的一个力的起点和另一个力的末端构成一个三角形。
最后连接的那条边就为两力的合力大小,方向为从一个力的起点到另一个力的末端。
设平面力系f1、f2、……fi、……fn汇交于一点o,若构成平衡力系,那么
均衡的几何条件就是:顺次将则表示各个力fi的存有向线段首尾相接,可以形成滑动n边形。
即为∑fi=0,这里fi就是矢量。
以o点为原点,任建一平面直角坐标系x-o-y,逐一把各力分解出水平分量fxi及竖直分量fyi,即令fxi=ficosθi;fyi=fisinθi,式中θi是力fi与选定x轴正方向夹的角,
均衡的解析条件就是:∑fxi=0;且∑fyi=o。
即为所有水平分量的代数和为零且所有直角分量的代数和为零。