平面一般力系的平衡
- 格式:ppt
- 大小:2.37 MB
- 文档页数:40
平面一般力系的二力矩式平衡方程平面一般力系的二力矩式平衡方程引言在物理学和工程学中,力学的平衡是一个重要的概念。
力学的平衡可以分为平面力系的平衡和空间力系的平衡。
在本文中,我们将讨论平面力系的平衡,并重点关注二力矩式平衡方程。
平面力系的定义和特点平面力系是指作用在一个平面内的一组力。
平面力系具有以下特点:1. 所有的力和力矩都在一个平面内;2. 力系中的力可以同时作用在一个物体的不同点上;3. 力系中的力可能会产生力矩。
力矩的概念力矩是指力对旋转物体造成的影响。
它由两个因素确定:力的大小和作用点与旋转轴的距离。
力矩的大小可以通过以下公式计算:M = Fd其中,M表示力矩,F表示力的大小,d表示力的作用点与旋转轴之间的距离。
力矩的方向可以通过以下规则确定:1. 如果力的作用点在旋转轴上,力矩的大小为零;2. 如果力由旋转轴向外作用,力矩的方向为顺时针方向;3. 如果力由旋转轴向内作用,力矩的方向为逆时针方向。
二力矩式平衡方程的推导在平面力系中,如果力系处于平衡状态,那么力系的合力和合力矩都必须为零。
根据牛顿第一定律,合力为零意味着物体的加速度为零;根据牛顿第二定律,合力矩为零意味着物体的角加速度为零。
设平面力系中共有n个力,分别记为F1, F2, ..., Fn。
考虑到每个力都可以产生力矩,那么每个力产生的力矩之和为:M1 + M2 + ... + Mn = 0力矩的正负号要根据力矩的方向来确定,根据上述力矩的规则,如果力矩是顺时针方向的,那么取正号;如果力矩是逆时针方向的,那么取负号。
根据力矩的计算公式,将每个力的力矩带入上述方程,得到二力矩式平衡方程:F1d1 + F2d2 + ... + Fndn = 0这就是平面力系的二力矩式平衡方程。
应用实例下面通过一个实例来说明如何应用二力矩式平衡方程。
假设有一个悬臂梁,上面有一个重物挂着。
悬臂梁的长度为L,重物的质量为m,重物与悬臂梁的连接处距离悬臂梁固定点的距离为d。
平面一般力系的平衡方程的三种形式
平面一般力系的平衡方程有以下三种形式:
1. 矢量和式形式:若平面一般力系中作用力F1、F2、F3、...、Fn与参考点O的连线分别为r1、r2、r3、...、rn,且F1、F2、
F3、...、Fn的和为零,则平衡条件可以表示为F1 + F2 + F3 + ...
+ Fn = 0。
2. 分力和式形式:根据平面一般力系的平衡条件,可以将作用
在此力系上的力分解为水平分力和垂直分力。
平衡条件可以表示为水
平分力的和等于零,即∑Fx = 0;垂直分力的和等于零,即∑Fy = 0。
3. 正负向分式形式:根据平面一般力系的平衡条件,可以选择
合适的坐标系,将力的方向分为正向和负向。
若力Fi与坐标系确定的
正向相背离,则可表示为Fi > 0;若力Fi与坐标系确定的正向相同,则可表示为Fi < 0。
平衡条件可以表示为所有正向力的代数和等于所
有负向力的代数和,即ΣFi > 0 - ΣFi < 0 = 0。
以上是平面一般力系的平衡方程的三种形式。
平面一般力系的独立平衡方程个数为
平面一般力系的独立平衡方程个数为3个,平面汇交力系的独立平衡方程数目有3个,分别是两个力的平衡方程和一个力矩平衡方程。
当刚体受到两个力的作用时:其中一个力保持不变,将第二个力的起点平移连接在另一个力的末端,然后连接剩下的一个力的起点和另一个力的末端构成一个三角形。
最后连接的那条边就为两力的合力大小,方向为从一个力的起点到另一个力的末端。
扩展资料:
力系平衡的充要条件
力系的力多边形自行封闭(自行封闭力多边形所得各力的指向是实际指向)。
力系合成的解析法
力在坐标轴上的投影是代数量,已知力的投影,可求得力的大小和方向,力在两个直角坐标轴上的投影与沿两个坐标轴的分力的关系。
分别令∑Fx=0;∑Fy=0;∑M=0.一个力在相互平行且同向的轴上的投影相等。
将一个力矢平行移动,此力在同一轴上的投影值不变,计算力的投影时,常用锐角进行计算,再冠以正负号。