焊接方法与设备第4单元熔化极气体保护焊
- 格式:ppt
- 大小:11.47 MB
- 文档页数:80
熔化极气体保护焊一、CO2电弧焊的特点和应用CO2电,以CO2气体作保护气体,依靠焊丝与焊件之间的电弧来熔化金属的气体保护焊的方法称CO2焊。
这种焊接法都采用焊丝自动送丝,敷化金属量大,生产效率高,质量稳定。
因此,在国内外获得广泛应用,与其它电弧焊相比有以下特点:1、生产效率高CO2电弧焊穿透力强,熔深大、而且焊丝熔化率高,所以熔敷速度快、生产效率可比手工电弧焊高3倍。
2、焊接成本低CO2焊的成本只有埋弧焊与手工电弧焊成本的40%-50%。
3、消耗能量低CO2电弧焊和药皮焊条相比3mm厚钢板对接焊缝,每米焊缝的用电降低30%,25mm 钢板对接焊缝时用电降低60% 。
4、适用范围宽不论何种位置都可以进行焊接,薄板可焊到1mm,最厚几乎不受限制(采用多层焊)。
而且焊接速度快、变形小。
5、抗锈能力强焊缝含氢量低抗裂性能强。
6、焊后不需清渣,引弧操作便于监视和控制,有利于实现焊接过程机械化和自动化。
我国在CO2焊接设备、焊接材料、焊接工艺方面已取得了很大的成就。
CO2电弧焊接在我国的造船、机车、汽车制造、石油化工、工程机械、农业机械中获得广泛应用。
二、焊机的型号和连接方法1、我公司CO2焊机型号(见文字说明表)2、面板上的旋钮作用与调节方法,(见说明书)3、连接方法水、电、气、焊枪(见说明书)4、焊枪的构造及软管、导电嘴、喷嘴。
5、焊机可能发生的故障及排除方法(见说明书)三、焊接材料1、CO2保护气体CO2有固态、液态、气态三种状态。
瓶装液态CO2是CO2焊接的主要保护气源。
液态CO2是无色液体,其密度随温度变化而变化。
当温度低于-11℃时密度比水大,当温度高于-11℃时则密度比水小。
由于CO2由液态变为气态的沸点很低为-78℃,所以工业焊接用CO2都是液态。
在常温下能自己气化。
CO2气瓶漆成黑色标有“CO2”黄色字样。
2、焊丝CO2气体保护焊对焊丝化学成分的要求:(1)焊丝必须含有足够数量的脱氧元素以减少焊缝金属中的含氧量和防止产生气体。
熔化极活性气体保护焊(Metal Active Gas Arc Welding )(MAG焊)熔化极活性气体保护焊一般采用在氩气中加入少量的氧化性气体(CO2、O2或其他混合气体)的混合气体作为保护气体进行焊接的一种熔化极气体保护焊方法。
1、熔化极活性气体保护焊的原理及特点原理与熔化极氩弧焊相同。
特点:除了具有一般气体保护焊的特点外,与纯氩弧焊、纯CO2焊相比还具有以下特点:(1)与纯氩气保护焊相比①熔池、熔滴温度比纯氩弧焊高,电流密度大,因此熔深大,焊缝厚度大,焊丝熔化速度快,熔敷效率高,有利于提高焊接生产率。
②具有一定氧化性,克服了纯氩保护时表面张力大、液态金属粘稠、易咬边及斑点漂移等问题。
同时改善了焊缝成形,由纯氩的指状(蘑菇)熔深成形改变为深圆弧状成形,接头的力学性能好。
③ CO2气体较便宜,降低了焊接成本低,但CO2的加入提高了产生喷射过渡的临界电流,引起熔滴和熔池金属的氧化及合金元素的烧损(2)与纯CO2气体保护焊相比①电弧温度高,易形成喷射过渡,故电弧稳定性好,飞溅少,熔敷系数高,节省焊材,生产效率高。
②由于大部分为惰性的氩气,熔池保护效果好,焊缝金属不易形成气孔,力学性能高。
③焊缝成形好,焊缝平缓,波纹细密,均匀美观,成本较CO2焊高。
2、熔化极活性气体保护焊常用混合气体及应用(1)Ar+O2Ar+O2可用于碳钢、低合金钢、不锈钢等高合金钢和高强钢的焊接。
焊接不锈钢等高合金钢和高强钢时,O2含量控制在(1%~5%);焊接碳钢、低合金钢时,O2含量可达20%。
为什么加入O2:①克服阴极斑点漂移,降低射流过渡的临界电流值,有利于熔滴的细化;②焊接不锈钢时,加入微量的O2对接头的抗腐蚀性无显著影响;当O2超过2%时,焊缝表面氧化严重,接头质量下降。
③因为焊缝金属的冲击韧性不取决于保护气体的氧化性,而取决于焊缝金属的含氧量,加入适量的O2,虽然气体的氧化性提高,但焊缝金属中的含氧量和杂质减少,因此焊缝金属的冲击韧性有所提高;(2)Ar+CO2Ar+ CO2既有Ar的优点(电弧稳定、飞溅少、容易获得轴向喷射过渡等),又有氧化性,克服了用单一Ar气焊接时的阴极斑点漂移现象及焊缝成形不好的问题。
实习必答题目:熔化极气体保护焊实习报告(□√IWE □IWS )姓名:实习目的:通过熔化极气体保护焊的操作过程,了解熔化极气体保护焊的基本操作技能,熟悉工艺规范参数及参数对焊缝成形的影响,产生各种缺欠的原因及预防措施,了解熔化极气体保护焊的工艺过程、适用范围及其相应的安全规程。
焊接准备:接头型式(简图) 母材及规格: Q235 300×150×6填充材料及规格: ER50—6(H08Mn2Si)Φ1.0电源型号: MEMORY350 : 焊道顺序(简图) 坡口加工方法: 火焰切割清理方法: 砂轮打磨装配与点固焊: 焊缝底部两端点固焊接工艺规范参数:电流种类极性焊接电流(A)电弧电压(V)焊丝干伸长(mm)保护气体种类(按ISO14175)气体流量(L/min)直流反接80~100 18~19 10 20 直流反接120~160 20~22 12 20 易产生的缺欠种类产生的原因预防办法咬边焊接速度过快、焊接电压过高、电流过大、两侧停留时间不够、焊枪角度不当。
采用低的焊接速度、降低电弧电压和送丝速度。
未熔合焊接区有氧化物、热输入不够、焊接熔池过大、焊接速度快、焊接坡口不合理。
焊前清理氧化膜、增加送丝速度和电弧电压降低干伸长防弧光防触电防烟尘个人措施穿好劳动保护工作服,戴好电焊手套和工作帽,戴好眼睛和皮肤保护用具,减少裸漏皮肤。
正确使用焊接电源和焊接发电机,使用绝缘良好的电缆和焊把。
戴防尘口罩,选择合适的焊接规范。
车间(工位)设施屏蔽焊接场地(间壁墙)。
焊接设备定期检查维修,焊接电源绝对安全。
完善的通风除尘设备。
表1-3二保焊是自动送丝操作方便,直线运条时焊接速度过快导致焊缝很窄,焊接时采用月牙形摆动增加焊缝宽度。
焊接过程中明显感觉到熔化金属喷射到裤腿上,焊接飞溅大要穿好工作服。
焊接过程由于焊接飞溅物堵塞焊枪导致焊接过程出现多次爆断,焊接前要检查焊枪是否堵塞。
焊前忘记清理工件导致焊缝与母材的融合性不好并且锈迹斑斑,焊前一定要清理工件。
熔化极气体保护焊原理及分类一、熔化极气体保护焊原理、特点及分类1、熔化极气体保护焊的原理用外加气体作为电弧介质,并保护熔滴、熔池和焊接区的电弧焊方法,称为气体保护焊。
气体保护焊分为:(1)熔化极气体保护焊;(2)不熔化极气体保护焊。
2.熔化极气体保护焊的特点(1)明弧焊,熔池可见度好;不用焊剂,烟雾少,无熔渣;保护气体是喷射的,适宜全位置焊接,不受空间位置的限制,有利于实现机械化和自动化焊接。
(2)电弧在保护气流的压缩下热量集中,熔池和热影响区很小,焊接变形小、焊接裂纹倾向不大,尤其适合于薄板焊接。
(3)采用氩、氦等惰性气体保护,当焊接化学性质较活泼的金属或合金时,可获得高质量的焊接接头。
(4)不宜在有风的地方施焊;弧光强烈;设备复杂。
3.熔化极气体保护焊的分类(1)按保护气体的成分可分为:①熔化极惰性气体保护焊(Metal Inert Gas Arc Welding )(MIG焊);②熔化极活性气体保护焊(Metal Active Gas Arc Welding)(MAG焊);③CO2气体保护焊(CO2焊)。
(2)按所用焊丝的类型不同可分为:①实芯焊丝气体保护焊;②药芯焊丝气体保护焊。
(3)按操作方式不同可分为:①半自动气体保护焊;②自动气体保护焊。
二、熔化极气体保护焊常用气体及应用熔化极气体保护焊常用的保护气体有:氩气(Ar)、氦气(he)、氮气(N2)、氢气(H2)、氧气(O2)、二氧化碳(CO2)及混合气体。
被焊材料保护气体混合比化学性质焊接方法铝及铝合金Ar惰性熔化极和钨极Ar+He (He)=10%铜及铜合金Ar惰性熔化极和钨极Ar+N2 (N2)=20%熔化极N2 还原性不锈钢Ar+O2 (O2)=1%~ 2% 氧化性熔化极Ar+O2+CO2 (O2)=2% 、(CO2)=5%碳钢及低合金钢CO2氧化性熔化极Ar+CO2 (CO2)=20%~ 30%O2+CO2 (O2)=10%~ 15%钛锆及其合金Ar惰性熔化极和钨极Ar+He (He)=25%镍基合金Ar+He (He)=15%惰性熔化极和钨极1.氩气(Ar)和氦气(he)—惰性气体常用于铝、镁、钛等金属及其合金的焊接。
气体保护焊操作规程一.概述:1.基本原理熔化极气体保护焊是以可以熔化的金属焊丝作电极,并由气体做保护的电弧焊。
利用焊丝和母材之间的电弧来熔化焊丝和母材,形成熔池,融化的焊丝作为填充金属进入熔池与木材融合,冷凝后即为焊缝金属。
通过喷嘴向焊接区喷出保护气体,使处于高温的熔化焊丝,熔池及其附近的母材可以免受周围空气的有害作用。
焊丝是连续的,由送丝轮不断地送进焊接区。
操作方式主要是半自动焊和自动焊两种。
焊丝有实心和药芯两类,前者一般含有脱氧用的和焊缝金属所需要的合金元素;后者的药芯成分及作用与焊条的药皮相似。
2.分类电流密度大,因而提高了敷熔速度。
b.可获得含氧量较焊条电弧焊低的焊缝金属。
c.在相同条件下,熔深比手工电弧焊大。
d.焊接厚板时,可以用较低的焊接电弧和较快的焊接速度,其焊接变形小。
e.烟雾少,可以减轻对通风的要求。
2)缺点(与手工电弧焊相比)a.规范不合适时,飞溅较大,表面成形差。
b.弧光较强。
c.焊接设备复杂,环境要求较高。
d.半自动焊枪比手工电弧焊铅重,不轻便,操作灵活性较差。
对于狭小空间的接头,焊枪不易接近。
4.使用范围1)适焊的材料。
MIG焊既可以焊接黑色金属又可以焊接有色金属,但从焊丝供应及制造成本考虑主要用于铝,铜,钛及其合金,以及不锈钢,耐热钢的焊接。
MAG和CO2焊主要用于焊接碳钢,低合金高强度钢。
2)焊接位置可以进行全位置焊接,其中以平焊位置和横焊位置焊接效率最高。
3)可焊厚度原则上开破口多层焊的厚度是无限的,它仅受经济因素限制。
二,保护气体采用保护气体的目的,是防止熔融焊缝金属被周围气氛污染和损害。
保护气体应满足如下要求:1.对焊接区起到良好的保护作用。
2.作为电弧的气体介质,应有利于引弧和保护电弧稳定燃烧。
3.有利于提高对焊件的加热效率,改善焊缝成形。
4.在焊接时,能促使获得所希望的熔滴过渡特性,减小金属飞溅。
5.在焊接过程中,保护气体的有害冶金反应能进行控制,以减小气孔,裂纹和夹渣等缺陷。
熔化极气体保护焊一.概述:1.基本原理熔化极气体保护焊是以可以熔化的金属焊丝作电极,并由气体做保护的电弧焊。
利用焊丝和母材之间的电弧来熔化焊丝和母材,形成熔池,融化的焊丝作为填充金属进入熔池与木材融合,冷凝后即为焊缝金属。
通过喷嘴向焊接区喷出保护气体,使处于高温的熔化焊丝,熔池及其附近的母材可以免受周围空气的有害作用。
焊丝是连续的,由送丝轮不断地送进焊接区。
操作方式主要是半自动焊和自动焊两种。
焊丝有实心和药芯两类,前者一般含有脱氧用的和焊缝金属所需要的合金元素;后者的药芯成分及作用与焊条的药皮相似。
2.分类本事业部的焊接方法为MAG焊。
80%Ar+20%CO2。
3.优缺点1)优点(与手工电弧焊相比)a.焊接效率高。
因为是连续送丝,没有更换焊条工序,焊道之间不需清渣,节省时间:通过焊丝的电流密度大,因而提高了敷熔速度。
b.可获得含氧量较焊条电弧焊低的焊缝金属。
c.在相同条件下,熔深比手工电弧焊大。
d.焊接厚板时,可以用较低的焊接电弧和较快的焊接速度,其焊接变形小。
e.烟雾少,可以减轻对通风的要求。
2)缺点(与手工电弧焊相比)a.规范不合适时,飞溅较大,表面成形差。
b.弧光较强。
c.焊接设备复杂,环境要求较高。
d.半自动焊枪比手工电弧焊铅重,不轻便,操作灵活性较差。
对于狭小空间的接头,焊枪不易接近。
4.使用范围1)适焊的材料。
MIG焊既可以焊接黑色金属又可以焊接有色金属,但从焊丝供应及制造成本考虑主要用于铝,铜,钛及其合金,以及不锈钢,耐热钢的焊接。
MAG和CO2焊主要用于焊接碳钢,低合金高强度钢。
2)焊接位置可以进行全位置焊接,其中以平焊位置和横焊位置焊接效率最高。
3)可焊厚度原则上开破口多层焊的厚度是无限的,它仅受经济因素限制。
二,保护气体采用保护气体的目的,是防止熔融焊缝金属被周围气氛污染和损害。
保护气体应满足如下要求:1.对焊接区起到良好的保护作用。
2.作为电弧的气体介质,应有利于引弧和保护电弧稳定燃烧。
焊接工艺及设备课后习题绪论1.与铆接相比,焊接可以节省金属材料,与粘结相比,焊接具有较高的强度。
2.根据焊接方法的焊接过程特点,可将其分为熔焊、压焊和钎焊三大类。
第一单元电弧焊基础知识综合知识模块一1.复合:电弧空间的正负带点粒子(正离子、负离子、电子)在一定条件下相遇而结合成中性粒子的过程。
2.电磁收缩力:当电流流过液体或气态导体时,电流可看成是由许多相距很近的平行同向电流线组成的,这些电流线之间将产生的相互吸引力。
3.最小电压原理:当电弧长度也为定值时,电场强度的大小即代表了电弧产热量的大小,因此,能量消耗最小时的电场强度最低,即固定弧长上的电压降最小。
4.电弧是一种气体放电现象,它是带电粒子通过两电极之间气体空间的一种导电过程。
5.要使两电极之间的气体导电,必须具备两个条件是:1. 两电极之间有带电粒子;2. 两电极之间有电场。
6.斑点力的方向与熔滴过渡方向相反,因而斑点力总是阻碍熔滴过渡的作用力。
7.电弧不稳定的原因除操作人员技术熟练程度不足外,还与焊接电源、焊条药皮或焊剂、焊接电流、磁偏吹等因素有关。
综合知识模块二1.熔滴过渡过程十分复杂,主要过渡形式有自由过渡、接触过渡和渣壁过渡三种。
2.立焊和仰焊时,促使熔滴过渡的力有表面张力、气体吹力和熔滴爆破力。
综合知识模块三1.焊缝成形缺陷包括焊缝外形尺寸不符合要求、咬边、未焊透和未熔合、焊瘤和焊穿及塌陷。
2.正确选择焊接参数和熟练掌握焊接操作技术是防止咬边的有效措施。
第二单元焊条电弧焊综合知识模块一1.焊条电弧焊是用手工操纵焊条进行焊接的电弧焊方法。
2.焊条药皮不断地分解、熔化而生成气体及熔渣,保护焊条端部,电弧、熔池及附近区域,防止大气对熔化金属的有害污染。
3.焊条电弧焊可以适时调整电弧位置和运条姿势,修正焊接参数。
因此,对焊接接头的装配精度要求相对降低。
综合知识模块二1.焊接极性:用直流电弧焊电源焊接时,工件和焊条与电源输出端正、负极的接法2.额定焊接电流:在额定负载持续率条件下允许使用的最大焊接电流。