稀土在铅基合金中的应用
- 格式:pdf
- 大小:111.89 KB
- 文档页数:3
《稀土元素对Zn-25 Al-5 Mg-2.5 Si合金组织和力学性能的影响》篇一一、引言随着科技的发展,合金材料因其优良的物理和机械性能被广泛应用于各个领域。
其中,Zn-Al-Mg-Si系合金以其优异的铸造性能和机械性能成为了众多研究者关注的焦点。
而稀土元素的加入则被视为进一步改善合金性能的有效途径。
本篇论文主要探讨了稀土元素对Zn-25 Al-5 Mg-2.5 Si合金的组织和力学性能的影响。
二、稀土元素与合金的相互作用稀土元素因其独特的电子结构和物理化学性质,在合金中具有显著的细化晶粒、提高强度和耐腐蚀性等作用。
当稀土元素加入到Zn-25 Al-5 Mg-2.5 Si合金中时,会与合金中的元素发生交互作用,形成一种更稳定、更均匀的微观结构。
三、稀土元素对合金组织的影响1. 晶粒细化:稀土元素的加入显著地细化了合金的晶粒,使合金的微观结构更加均匀。
这种晶粒细化效应能够提高合金的力学性能,特别是抗拉强度和韧性。
2. 相结构变化:稀土元素的加入会影响合金的相结构,形成新的相或改变原有相的形态和分布。
这些新相或改变后的相能够有效地提高合金的硬度和耐磨性。
四、稀土元素对合金力学性能的影响1. 抗拉强度:由于晶粒细化和相结构的变化,稀土元素的加入显著提高了合金的抗拉强度。
抗拉强度的提高使得合金在承受拉伸力时不易断裂,提高了其使用寿命。
2. 韧性:稀土元素的加入能够改善合金的韧性,使合金在受到冲击或振动时不易产生裂纹或断裂。
这种改善有助于提高合金的安全性和可靠性。
3. 硬度与耐磨性:由于新的相或改变后的相的形成,稀土元素的加入提高了合金的硬度和耐磨性。
这使得合金在高温、高压、高磨耗等恶劣环境下具有更好的性能表现。
五、实验结果与讨论通过实验,我们观察了不同稀土元素含量对Zn-25 Al-5 Mg-2.5 Si合金组织和力学性能的影响。
结果表明,适量稀土元素的加入能够显著细化晶粒,改变相结构,从而提高合金的抗拉强度、韧性和硬度等力学性能。
稀土在铜及铜合金中的作用一、稀土对铜及铜合金组织的影响1、净化组织工业用铜中往往含有多种杂质,虽然有些杂质含量很低,甚至低于0.001 %(质量分数,下同) ,但是这些杂质元素会严重影响铜及铜合金的加工性能、降低导电性及导热性。
如氧、硫和铜形成的脆性化合物(Cu2O 和Cu2S) 可以降低铜的塑性,这些脆性化合物冷拉时还会产生毛刺,并降低铜的导电性、耐蚀性和焊接性能。
稀土净化铜及铜合金组织主要有两种方式: (1) 稀土与氧和硫的亲和力很强,形成熔点较高,热稳定性强,比重较小的稀土化合物,从而达到脱硫、脱氧的作用;又稀土元素很容易与原子态氢发生作用,生成RH2 或RH3 型稳定氢化物(R 代表稀土金属) ,这些氢化物以固溶体的形式溶于铜合金中,从而消除了氢的有害作用。
(2) 稀土与铅、铋等元素生成比铜熔点高的高熔点金属间化合物,因此在铜熔铸过程中,可以保持固体状态,与熔渣一起从液体金属铜合金中排除,达到脱铅、铋的目的。
2、细化组织稀土对铜及铜合金显微组织的影响主要体现为细化晶粒,减少或消除柱状晶,扩大等轴晶区的作用。
稀土细化铜及铜合金组织的作用机理主要存在以下三种: (1) 形成新晶核,抑制晶粒长大。
稀土在铜及其合金中能与一些元素反应形成高熔点化合物,常以极微细颗粒悬浮于熔体之中,成为弥散的结晶核心,使晶粒变多,变小;又从凝固原理及热力学观点看,由于稀土大量聚集在固液界面前沿的液相中,使合金在凝固时成分过冷增大,以树枝状方式凝固生长,同时在分枝节点处产生细颈、熔断,增多了结晶核心,从而细化了晶粒。
(2) 微晶化作用。
由于稀土元素的原子半径( 0.174nm~0.204 nm) 比铜的原子半径(0.127nm) 要大36 %~60 % ,故稀土原子很容易填补正在生长中的铜或铜合金的晶粒新相的表面缺陷,生成能阻碍晶粒继续生长的膜,从而细化为微晶; (3) 合金化作用。
稀土在铜中的溶解度很小,一般仅千分之几到万分之几,但稀土与铜能生成多种金属间化合物。
稀土金属的最新应用引言稀土金属材料可以分成稀土金属合金以及稀土金属间化合物两大类。
稀土金属合金有稀土铸铁、稀土钢铁合金、稀土有色金属合金等,多为结构材料。
稀土金属间化合物则是稀土金属与其他金属或类金属之间形成的具有一定化学成分、晶体结构和显著金属结合键的物质,原子遵循着某种有序化的排列。
这些金属间化合物在稀土合金相图中被称为稀土金属中间相。
稀土金属间化合物主要有稀土磁性材料、稀土储氢材料、稀土热电材料( YbAl3,CePd3,YbxCo4Sb12,CeNiSn) 、热电子发射材料( LaB6 单晶) 、超导材料( LaAl,LaAl2,LaSi3) 等,多为功能材料。
一、稀土金属在冶金及其结构材料上的应用稀土是活泼的,易与氧、氢、氮、硫和其他元素结合成化合物,但不易与碳结合。
在炼钢工艺中稀土用来生产较纯的、不含气体的钢,其含硫低,夹杂少。
硫化物夹杂呈球形,热轧时仍为球形,它均匀布于晶内,这就增加钢的热塑性和可弯曲性,使其韧性更加各向同性。
加稀土处理过的钢达到较高的屈服强度和冲击韧性,并具有较低的脆性转变温度。
它使低合金钢获致较高的硬度,很高的耐磨和抗蚀性能,使含高铬的铁素体不诱钢获得更高的抗氧化能力,在循环加热试验中结果良好,并可替代镍铬合金作发热体用。
稀土促进了铸铁中的石墨化和球化,细化了石墨体,铁素体和共晶体;从而提高了铸铁的延性、韧性和强度。
制延性铸铁时,加铈可减少镁的添加量,因而防止了镁的挥发和烧损。
随着稀土的添加,灰口铁成为较有延性的,白口铁更为耐磨,使可加工铸铁的热处理时间缩短,而合金铸铁可获得更好的抗蚀和抗氧化能力。
稀土在金属中添加的量虽然不多,但是应用领域非常广,而且带来的附加价值高,仍有很大的发展空间。
除了在铸铁、钢铁以及有色金属中的应用外,在稀土金属间化合物方面的应用也开始受到关注,如B2 型稀土金属间化合物由于具有良好的室温塑性而受到人们的关注,在这种稀土金属间化合物中发现应力诱导相变有助于提高材料的塑性。
稀土对铝及其合金的影响及其作用稀土元素非常活泼,极易与气体(如氢)、非金属(如硫)及金属作用生成相应的稳定化合物。
稀土元素的原子半径小于常见的金属,如铅、镁等,在这些金属中的固溶度极低,几乎不能形成固溶体。
稀土元素加入到铝合金中可起到微合金化的作用;此外,它与氢等气体和许多非金属有较强的亲和力,能生成熔点高的化合物,故它有一定的除氢、精炼、净化作用;同时,稀土元素化学活性极强,它可以在已形成的晶粒界面上选择性地吸附,阻碍晶粒的生长,结果导致晶粒细化,有变质的作用。
1、变质作用变质处理是指在金属及合金中加入少量或微量的变质剂,用以改变合金的结晶条件,使其组织和性能得到改善的过程。
变质剂又称晶粒细化剂或孕育剂。
通常情况下,稀土原子半径。
又由于稀土元素比较活泼,它熔于铝液中极易填补合金相的表面缺陷,从而降低新旧两相界面上的表面张力,使得晶核生长速度增大。
同时它还能在晶粒与合金液之间形成表面活性膜,阻止生成的晶粒长大,使合金的组织细化。
此外,作为外来的结晶晶核,铝与稀土形成的化合物在金属结晶时,因晶核数的大量增加而使合金的组织细化。
稀土在铝硅合金中主要是起变质作用,使针、片状共晶硅变成球粒状,使初晶硅的尺度有所减小。
不同稀土的变质能力不同,La和Eu具有强烈的变质作用,而混合稀土和Ce只有中等程度的变质能力。
镧系元素的变质能力与其原子半径有密切的关系,随着原子半径由La的0.187nm减小到Er的0.175nm时,其变质能力逐渐减小。
大体上原子半径小于0.18nm,变质作用即减小到没有实际意义的程度。
不同稀土元素的变质能力可用临界变质冷却速度(Vc)来衡量,Vc越小,则其变质效果越明显;当V小于Vc时,任何浓度的稀土元素均不能引起合金变质,这是稀土与其他变质剂的主要差别之一。
对Al-Si系的研究表明,变质处理工艺直接影响着稀土的变质效果。
获得稳定变质组织的关键是减少稀土的烧损,并防止稀土偏聚,使稀土迅速均匀地扩散到铝液中;为获得稳定的变质组织,应尽可能提高变质温度,变质后加强静置,精炼后严格扒渣,并且尽可能不用卤族元素熔剂进行精炼和覆盖。
稀土金属及合金制备工艺的研究与应用一、引言稀土金属是指在地壳中含量很少的一类金属元素。
由于其化学特性的多样性和特殊性,在众多领域中有着广泛的应用。
稀土金属制备工艺则是指利用各种合成化学方法,从原料中提取出所需的稀土金属元素,并制备成可应用的稀土金属合金。
本文将介绍稀土金属及合金制备工艺的研究现状与应用领域。
二、稀土金属的特性与制备工艺稀土金属具有一些独特的特性,如:良好的稳定性、卓越的催化性能、磁性、光电性能以及特殊的电学性能等等。
由于其特殊性,稀土金属被广泛应用于多个领域,如冶金、催化、电子、能源等。
稀土金属的制备过程通常通过以下几个步骤:提取原料、分离稀土金属元素、精细合成等。
1.1提取原料稀土金属的提取过程是非常重要的一个步骤。
通常情况下,稀土金属由稀土矿石和废旧催化剂等原料提取。
稀土矿石矿床储量较大,其中包括了多种稀土金属元素。
催化剂中含有的稀土金属则来自工业生产中的不同过程。
通过提取各类原料中的稀土金属元素,得到的原料经过大量的处理可以用于稀土金属的制备。
1.2分离稀土金属元素稀土金属的分离工作主要是基于其化学性质,将不同的稀土金属元素分离后,进行缩合反应和分离,最终得到相应稀土金属。
1.3精细合成精细合成是指通过物理化学手段,将提取的稀土金属元素与其他元素合成成稀土金属材料。
在此过程中,控制合成条件和合成过程中材料微观结构和化学状态的变化,对提高稀土合金材料的性能有着重要意义。
通常情况下,精细合成的方法包括冶金、熔盐电解、热化学还原等。
三、稀土合金的应用领域稀土金属合金由于其多种特殊的物理、化学特性,已经被广泛应用于许多领域,如环保、能源、电子、医疗、冶金等等。
3.1稀土合金在环保领域的应用稀土材料在环保领域有着广泛应用,例如使用稀土材料作为有机催化剂可以有效的促进氧化还原反应,使用稀土催化剂对污染气体进行处理,降低空气污染程度等。
此外,一些稀土元素也可以被应用于储能系统、太阳能电池等,从而达到又不损失能量的环保目的。
稀土在低合金及合金钢中的应用
稀土是指存在于地球上地壳中的17种稀有金属元素,具有良好的物理化学性质和广泛的应用前景。
在低合金及合金钢中,稀土可以通过形成包括稀土元素的化合物和合金来提高钢材的性能。
首先,稀土在低合金钢中的应用主要是通过添加钕、铈、镧等稀土元素来提高其耐磨性和耐蚀性。
这是因为稀土元素可以与钢中的碳、硅等元素形成坚硬且耐腐蚀的氧化物和硫化物,从而提高钢材的抗磨性和耐蚀性。
同时,稀土还可以防止钢材的氢脆现象,提高其韧性和塑性。
稀土添加量通常在0.01-0.05%之间。
其次,稀土还可以通过改善低合金及合金钢的组织和晶界来提高其性能。
稀土元素在钢的熔炼过程中可以与非金属夹杂物结合,形成易于被热处理和机械加工的粗大晶粒,从而降低了钢材的碳化物析出速率和脆性,提高了韧性和塑性。
此外,稀土还可以通过提高钢材的耐高温性能来应用于高温合金钢中。
稀土元素可以与钢中的铬、钼等元素形成高温稳定的化合物,从而提高钢材的抗烧蚀、耐氧化、耐氧化还原性和高温强度。
总而言之,稀土在低合金及合金钢中的应用是多方面的,其通过改善钢材的结构和组织、提高其抗磨性、耐蚀性、耐高温性能等方面来提高钢材的性能,有着广泛的应用前景。