【高中数学】3.1.2概率的意义(教、学案)
- 格式:doc
- 大小:71.00 KB
- 文档页数:12
高中数学必修三学案:3.1.2 概率的意义113118,找出疑惑之处)1.概率的正确理解:概率是描述随机事件发生的的度量,事件A的概率P(A)越大,其发生的可能性就越;概率P(A)越小,事件A发生的可能性就越 .2.概率的实际应用:知道随机事件的概率的大小,有利我们做出正确的 ,还可以解决某些决策或规则的正确性与公平性.3.游戏的公平性:应使参与游戏的各方的机会为等可能的, 即各方的相等,根据这一要求确定游戏规则才是的.4.决策中的概率思想:以使得样本出现的最大为决策的准则.5.天气预报的概率解释:降水的概率是指降水的这个随机事件出现的 ,而不是指某些区域有降水或能不能降水.6.遗传机理中的统计规律: (看教材P118)二、新课导学※ 探索新知探究1:概率的正确理解问题1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。
你认为这种想法正确吗?试验:让我们做一个抛掷硬币的试验,观察它落地时的情况。
每人各取一枚同样的硬币,连续两次抛掷,观察它落地后的朝向,并记录下结果,填入下表。
重复上面的过程10次,把全班同学试验结果汇总,计三种结果发生的频率。
事实上,“两次均反面朝上”的概率为,“两次均反面朝上”的概率为,“正面朝上、反面朝上各一次”的概率为。
问题2:有人说,中奖率为 1/1000的彩票,买1000张一定中奖,这种理解对吗?探究3:游戏的公平性问题3:在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?探究4:决策中的概率思想思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考教材115页)探究5:天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?明天本地有70%的区域下雨,30%的区域不下雨?明天本地下雨的机会是70%思考:遗传机理中的统计规律你能从课本上这些数据中发现什么规律吗?※ 典型例题例1某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。
第二课时 3.1.2 概率的意义教学要求:正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题.教学重点:概率意义的理解和应用.教学难点:用概率知识解决现实生活中的具体问题.教学过程:一、复习准备:1. 讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?2. 提问:如果某种彩票的中奖概率是1,那么买1000张这种彩票1000一定能中奖吗?二、讲授新课:1. 教学基本概念:①概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.②概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)③游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的④决策中的概率思想:以使得样本出现的可能性最大为决策的准则⑤天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.⑥遗传机理中的统计规律:2. 教学例题:①出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?,那么买1000张这种彩票②练习:如果某种彩票的中奖概率是11000一定能中奖吗?请用概率的意义解释.(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。
)③出示例2:在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性.。
§3.1.2概率的意义【学习目标】正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题.【重点难点】重点: 概率意义的理解和应用.难点:用概率知识解决现实生活中的具体问题.【学法指导】理解概率的实质,明确随机事件发生可能性的大小的度量(概率)是由它自身决定的,并且是客观存在的,学习时注意结合背景材料建立概率和实际的联系.【知识链接】1.概率的意义:概率的大小反映事件发生的可能性的大小,无论随机事件的概率是很大(接近于1)或很小(接近于0),在一次试验中仍有两种可能,即随机事件可能发生,也可能不发生.2.理解概率的实质,明确随机事件发生可能性的大小的度量(概率)是由它自身决定的,并且是客观存在的,学习时注意结合背景材料建立概率和实际的联系.【问题探究】探究一.概率的正确理解思考1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上.你认为这种想法正确吗?动手做一做.引导:通过具体的试验可以发现有三种可能的结果:_____________________________________,这正体现了随机事件发生的随机性,所以这种想法是_______.点拨:随机事件在一次试验中发生与否是随机的,但是随机性中含有,认识了这种随机性中的规律性,就能使我们比较准确的预测随机事件发生的,概率只是度量事件发生的可能性的,不能确定是否发生.思考2:如果某种彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖吗?为什么?引导:买一千次彩票,等于做一千次试验,因为每次试验结果都有,所以买一千张中奖.点拨:虽然中奖张数是随机的,但这种随机性中也有规律性.随着试验次数的增加,即随着所买彩票张数的增加,其中中奖彩票所占的比例可能越接近于 .探究二: 游戏的公平性(阅读教材115页内容)思考3:在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性.引导:这个规则是______,因为每个运动员先发球的概率为_____,即每个运动员取得先发球权的概率是______,抽签上抛后,红圈朝上与绿圈朝上的概率均是______,因此任何一名运动员猜中的概率都是______,也就是每个运动员取得先发球权的概率都是______.点拨:使两个运动员取得先发球权的概率都是______的规则都是公平的.思考4:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动.由于某种原因,一班必须参加,另外再从二班至十二班中选1个班.有人提议用如下方法:抛掷两枚骰子,得到的点数和是几,就选几班,你认为这种方法公平吗?引导:这种方法______,如课本图标所示,投掷两个骰子总共会产生______种结果,但点数和是2的只有______种,点数和是7的有______种,这样选2班的概率是______,选7班的概率是______,显然此做法不公平.点拨:利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.探究三:决策中的概率思想(阅读教材116页内容)思考5:如果连续10次掷一枚骰子,结果都出现1点.你认为这枚骰子的质地均匀吗?为什么?引导:此时我们面临两种决策,一种是___________,另一种是_____________.当连续10次抛掷这枚骰子,结果都出现1点,而如果骰子是均匀的,一次试验中每个面出现的可能性是____,从而连续10次出现一点的概率是__________,在一次试验中________.点拨:在一次试验中的事件称为小概率事件.如果我们面临的是从多个可选答案中挑选正确的答案的决策任务,那么“使样本出现的可能性”可以作为决策的准则,这种判断问题的方法称为,此法是统计中重要的统计思想方法之一.探究四:天气预报的概率解释(阅读教材116—117页内容)思考6:某地气象局预报说,明天本地降水概率为0.7,你认为下列两个解释哪一个能代表气象局的观点?(1)明天本地有0.7的区域下雨,0.3的区域不下雨(2)明天本地下雨的机会是0.7. 思考7:天气预报说昨天降水概率是0.9,结果根本一点雨也没下,天气预报页太不准确了,学了概率后,你能给出解释吗?引导:思考6:很显然,是正确的.思考7:天气预报的降水是一个,因此昨天没有下雨并不说明昨天的降水概率为0.9的天气是错的.点拨:概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.探究五:遗传学中的统计规律(阅读课本117,118页)引导:(1)在第二代中YY出现的概率是,Yy出现的概率是,yy出现的概率是 .(2)在第二代中黄色豌豆与绿色豌豆的数量比约为 .点拨:孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.【典例分析】例1.一个箱子中放置了若干个大小相同的白球和黑球,从箱中抽到白球的概率是99%,抽到黑球的概率是1%,现在随机取出一球,你估计这个球是白球还是黑球?引导:概率是描述随机事件发生的可能性大小的一个数量.点拨: 即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大, 这正体现了随机事件发生的随机性.例2.一个不透明的袋子里放有同样大小的9个白色乒乓球和1个黄色乒乓球,每次从中随机摸出1个球后再放回,一共摸10次,你认为一定有一次会摸到黄色乒乓球吗?试说明你的理由.引导: 每次从中摸球都是随机的, 10次摸球的结果也是随机的.点拨: 随机事件在一次试验中发生与否是随机的,但是随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确的预测随机事件发生的可能性,概率只是度量事件发生的可能性的大小,不能确定是否发生.【目标检测】一.选择题1.气象台预报“本市明天降雨概率是70%”,以下理解正确的是 ( )A.本市明天将有70%的地区降雨;B.本市明天将有70%的时间降雨;C.明天出行不带雨具肯定淋雨;D.明天出行不带雨具淋雨的可能性很大.2.在给病人动手术之前,外科医生会告知病人或家属一些情况,如这种手术的成功率大约是99%,下列解释正确的是 ( )A.100个手术有99个手术成功,1个失败;B .这个手术一定成功;C .99%的医生能做这个手术,另外1%的医生不能做;D .这个手术成功的可能性是99%.3.抛掷一枚质地均匀的正方体骰子,若前三次连续抛到“6点朝上”,则对于第四次抛掷结果的预测,下列说法中正确的是 ( )A .出现“6点朝上”的概率大于61;B .出现“6点朝上”的概率等于61; C .一定出现“6点朝上”; D .无法预测“6点朝上”的概率.4.从一批计算机中随机抽出100台进行质检,其中有10台次品,下列说法正确的是( )A.次品率小于10%B.次品率大于10%C.次品率接近10%D.次品率等于10%二.填空题5.从A,B,C 三个同学中选2名代表学校到省里参加奥林匹克数学竞赛,A 被选中的概率是______. 6﹡设某厂产品的次品率为2%,估计该厂8000件产品中合格品的件数可能为______.三.解答题7.先后抛掷两枚质地均匀的硬币.(1)一共可以出现多少种不同的结果?(2)出现“一枚正面、一枚反面“的结果有几种?8*“一个骰子掷一次得到2的概率是61,这说明一个骰子掷6次会出现一次2”这种说法对吗?请说明你的理由.提示: 每掷一次都是随机的, 掷6次的结果也是随机的.【总结提升】:1. 概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.2. 孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.3. 利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.【总结反思】知识重点 .能力与思想方法【自我评价】你完成本学案的情况为( )A.很好B.较好C.一般D.较差。
课题离散型随机变量的数学期望一、学习目标:1、熟记离散型随机变量的数学期望的计算公式,能计算离散型随机变量的数学期望。
2、记住二点分布、二项分布、超几何分布的数学期望计算公式。
二、自学指导:认真阅读课本59页——61页的内容(二项分布与超几何分布公式的推导不做要求), 并注意以下几个方面:1、能通过实例总结出离散型随机变量的数学期望公式。
2、记住二点分布、二项分布、超几何分布的数学期望计算公式。
3、看例1、学会用数学期望来估计水平的高低。
3、看例2、3、学会求离散型随机变量的数学期望。
(说明:限时12分钟,12分钟后进行检测,看谁能运用本节知识作对检测题。
)三、自学检测一:(2分钟)1、离散型随机变量的数学期望公式,离散型随机变量的数学期望刻画了这个离散型随机变量的2、二点分布的数学期望计算公式3、二项分布的数学期望计算公式4、超几何分布的数学期望计算公式自学检测二:(要求:书写规范,步骤完整,限时12分钟。
)1、设离散型随机变量X的分布列为求E(X)2、两台生产同一零件的车床,设一天生产中次品的分布列分别为如果两台车床在一天中的产量相同,试问哪台车床期望的次品少?3. 在10件产品中,有3件一等品、7件二等品.从这10件产品中任取3件,求取出的3件产品中一等品件数X 的分布列和数学期望.4、甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.记甲击中目标的次数为ξ,乙击中目标的次数为η. (1)求ξ的分布列; (2)求ξ和η的数学期望.四、当堂训练:(不讨论,独立完成,时间:10分钟)1、袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分,试求得分ξ的概率分布和数学期望.2.从装有3个白球和2个黑球的布袋中摸取一球,有放回的摸取5次,求摸得的白球数X的数学期望。
五、课堂小结。
必修三概率的意义教课目的重点:概率的正确理解及其在实质生活中的应用.难点:利用概率思想正确办理和解说实质问题,随机试验结果的随机性与规律性的关系. 知识点:①正确理解概率的含义.②随机性与规律性:解说每次试验结果的随机性,多次试验结果的规律性,进一步说明频次与概率之间的差别. ③概率与公正性的关系. ④概率与决议的关系. ⑤概率与预告的关系⑥试验与发现,遗传机理中的统计规律.能力点:学生经历试验,统计,剖析,概括,总结,从而认识并感觉概率的定义的过程,引导学生从数学的视角,察看客观世界;用数学的思想,思虑客观世界;以数学的语言,描绘客观世界. 学生经历试验,整理,剖析,概括,确认等数学活动,感觉数学活动充满了研究性与创建性,感觉量变与质变的对峙一致规律,培育对概率的精准,新奇,独到的思想方式的能力.教育点:经过对概率的实质意义的理解,领会知识根源于实践并应用于实践的辩证唯心主义观,从而领会数学与现实世界的联系. 认识事物之间的广泛联系与互相转变,培育学生用联系的看法看问题.自主研究点:①有人说,既然扔掷一枚硬币出现正面向上的概率为,那么连续扔掷两次一枚质地平均的硬币,必定是一次正面向上,一次反面向上. 你以为这类想法正确吗?②某中学高一年级有12 个班,要从中选 2 个班代表学校参加某项活动,因为某种原由,一班必须参加,此外再从二至十二班中选 1 个班 . 方法:掷两个骰子获得的点数和是几,就选几班,公平吗?考试点:概率内容高考必考.易错易混点:频次与概率关系,等可能与非等可能问题,有序与无序问题.拓展点 :大千世界充满了随机事件,生活中到处有概率. 利用概率的理论意义,对各样实质问题作出合理解说和正确决议,是我们学习概率的一个基本目的.教具准备乒乓球 9 白 1 黄、学生每人 1 枚硬币、 8 个骰子、三角板和多媒体.【教课过程】一、引入新课1.创建情境,揭露课题(导教案题组)同学们,我们上节课学习了随机事件的概率,请回想必定事件、不行能事件、确立事件、随机事件的定义,概率、频次定义,频次与概率关系,并回答以下问题:( 1) 指出以下事件是必定事件、不行能事件,仍是随机事件:①枣庄明年 1 月 1 日刮西寒风;②三个乒乓球放入两个盒子里,此中一盒必有两个球;③手机的电池没电,能打电话;④一个电影院某天的上座率超出50% ;⑤明日坐公交车比较拥堵;⑥将一枚硬币扔掷 4 次出现两次正面和两次反面;学生思虑,而后找两位同学说出答案.答案:②是必定事件,③是不行能事件,①④⑤⑥是随机事件.( 2) 以下说法:①频次是反应事件发生的屡次程度,概率反应事件发生的可能性的大小;②做n次随机试验,事件 A 发生的频次m就是事件的概率;③百分率是频次,但不是概率;④频次是不n能离开详细的n 次试验的试验值,而概率是拥有确立性的不依靠于试验次数的理论值;⑤频率是概率的近似值,概率是频次的稳固值. 此中正确的选项是___.学生思虑,而后找两位同学说出答案.答案:( 1)(4)( 5).【设计企图】经过问题复习回首随机事件概率相关的看法,做好知识铺垫.某商场为了促销,搞摸奖活动,促销员大叫:“快来摸奖,中奖率50℅,买两张,中一张!”,买两张真的能中一张吗?,要解决这个问题,我们来学习概率的意义.【板书】 3.1.2 概率的意义【设计企图】由实质问题,引入课题.二、研究新知【研究新知一】概率的正确理解思虑 1:既然扔掷一枚硬币出现正面的概率为,那么连续两次扔掷一枚质地平均的硬币,必定是一次正面向上,一次反面向上,你以为这类想法正确吗?学生回答“是”与“否”,同学们的看法不一致,让学生做试验.研究 1:教师指引学生做试验:全班同学各取一枚相同的硬币,连续两次扔掷,察看它落地后朝向,并记录结果 . 重复上边的过程10 次,将全班同学的试验结果汇总,计算三种结果发生的频次。
教学准备
1. 教学目标
1.正确理解概率的意义;利用概率知识正确理解现实生活中的实际问题.
2.通过对现实生活中的“掷币”、“游戏的公平性”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
3.通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系.
2. 教学重点/难点
教学重点:
理解概率的意义.
教学难点:
用概率的知识解释现实生活中的具体问题.
3. 教学用具
4. 标签
教学过程
课堂小结
概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索.通过以上例题与练习可以感到,数学特别是概率正越来越多地应用到我们的生活当
中.它们已经不是数学家手中的抽象理论,而成为我们认识世界的工具.从彩票中奖,到证券分析;从基因工程,到法律诉讼;从市场调查,到经济宏观调控;概率无处不在.
课后习题
教材第118页练习:1、2、3、
板书
引入复习知识点
1
2
3
例题讲解
1
2
3
4
课堂练习
1
2。
班级:姓名:小组:评价:课题必修三 3.1.2 概率的意义教学目标1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律课型课时学法指导:1.通过实例理解概率的意义.(重点、难点)2.概率在实际生活中的应用.(重点)【教学过程及内容】[上节回顾][教学过程](含各环节设计、方法指导、课堂练习等)1.知识引入1.随机事件概率的理解随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.2.极大似然法的概念如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么课海拾贝/反思纠错“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.3.概率的意义概率的意义就是用概率的大小反映事件A发生的可能性,但在一次试验中仍有两种可能,即事件A可能发生也可能不发生2.自主探究对概率意义的理解(1)概率是从数量上反映了随机事件发生的可能性大小的一个数学概念,它是对大量重复试验来说存在的一种统计性规律,对单次试验来说,随机事件发生与否是随机的.(2)错误认识的澄清:有人说:“既然抛掷一枚质地均匀的硬币出现正面的概率是0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面向上,一次反面向上”.这种说法显然是错误的.(3)概率是描述随机事件发生的可能性大小的度量.即:概率越大,事件A发生的可能性就越大;概率越小,事件A发生的可能性就越小.(4)随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.(5)求随机事件概率的必要性.知道事件的概率可以为人们做决策提供依据,概率是用来度量事件发生可能性大小的量.小概率事件很少发生,而大概率事件经常发生.例如:如果天气预报报道:“今天降水的概率是10%”.可能绝大多数人出门都不会带雨具,而如果天气预报报道:“今天降水的概率是90%”,那么大多数人出门都会带雨具.特别提示 概率是一种可能性,只是频率在理论上的一种期望值.3.典例讲析某射手击中靶心的概率是0.9,是不是说明他射击10次就一定能击中9次?抛掷10枚硬币,全部正面向上.试就这一现象分析,这些硬币的质地是否均匀.4.变式练习下列说法正确的是( ).A .由生物学知,生男生女的概率大约都是12,则一对夫妇生了两个孩子,一定是一男一女B .10张券中有1张奖券,10个人去摸,谁先摸则谁中奖的可能性大C .昨天没有下雨,则说明昨天的天气预报“降水概率是80%”是错的D .一次摸奖,中奖率是15,则某人连摸5张券,也不一定会中奖[反馈习题]为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库中鱼的尾数.山东三吉钢木家具厂为2010年广州亚运会游泳比赛场馆生产观众座椅.质检人员对该厂所产2 500套座椅进行抽检,共抽检了100套,发现有5套次品,试问该厂所产2 500套座椅中大约有多少套次品?[学生知识结构整理归纳]。
3.1.2概率的意义一、教学目标:1、知识与技能:(1)正确理解概率的意义;(2)利用概率知识正确理解现实生活中的实际问题;2、过程与方法:通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法。
3、情感态度与价值观:通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系。
二、重点与难点:(1)重点:对概率含义的正确理解及其在实际中的应用;(2)难点:随机试验结果的随机性与规律性的联系。
三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:请大家回忆一下随机事件发生的概率的定义?对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。
频率与概率的有什么区别和联系?区别:①频率是随机的,在实验之前不能确定;②概率是一个确定的数,与每次实验无关;联系③随着实验次数的增加,频率会越来越接近概率;④频率是概率的近似值,概率是用来度量事件发生可能性的大小.2、学习新课1.概率的正确理解思考:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。
你认为这种想法正确吗?这种想法是错误的。
因为连续两次抛掷一枚质地均匀的硬币仅仅是做两次重复抛掷硬币的试验,试验的结果仍然是随机的,当然可以两次均出现正面朝上或两次均出现反面朝上。
随机事件在一次试验中发生与否是随机的。
探究:每人各取一枚同样的硬币,连续两次抛掷,观察它落地后的朝向,并记录下结果,填入下表。
3. 1.2概率的意义一、教材分析(1)正确理解概率的含义。
在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:①试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正“连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上”的错误认识;通过从盒子中摸球的试验,解释中奖概率为的含义,纠正“如果中奖率为,那么买1000张彩票一定能中奖”的错误认识。
②随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。
(2)了解概率在实际问题中的应用。
①概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。
可以从正反两个方面举例让学生进行判断。
②概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。
这种思想是“风险与决策”中经常使用的。
③概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。
二、教学目标1.从频率稳定性的角度,了解概率的意义.2.学生经历试验,统计,分析,归纳,总结,进而了解并感受概率的定义的过程,引导学生从数学的视角,观察客观世界;用数学的思维,思考客观世界;以数学的语言,描述客观世界.3.学生经历试验,整理,分析,归纳,确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准,新颖,独特的思维方式所震撼..三、教学重点难点重点:概率的正确理解。
难点:用概率知识解决现实生活中的具体问题。
四、学情分析回忆上节课有关概率的定义,通过试验解释概率的含义,纠正日常生活中的一些错误认识,介绍概率与公平性、概率与决策、概率与预报方面的实例。
五、教学方法1.举例法2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:预习课本,初步把握概率的定义。
《概率的意义》教学设计一、教材分析:本节是义务教育课程标准实验教科书九年级上册第二十二章概率初步的内容,在上两个课时里学习了随机事件的概念以及形成了对随机事件发生可能性大小的定性分析,在总结了随机事件发生可能性大小的特点和影响随机事件发生可能性大小的客观条件的基础上来研究概率的意义。
二、教学目标:知识与技能:1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值;2.在具体情境中了解概率的意义。
教学思考:让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型,初步理解频率与概率的关系。
解决问题:在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力,锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念。
情感态度:1.在合作探究学习过程中,激发学生学习的好奇心与求知欲。
体验数学的价值与学习的乐趣。
2.通过概率意义教学,渗透辩证思想教育。
三、教学重、难点:教学重点:在具体情境中了解概率意义.教学难点:对频率与概率关系的初步理解四、教学方法:实验探究,归纳总结五、教具、学具:壹元硬币数枚、多媒体课件六、教学媒体:多媒体七、教学过程:活动(一)创设情境,引入新课教师提出问题:同学们都看过兵乓球比赛吧!在每次比赛之前运动员要选择场地的位置,你知道他们是如何决定的么?教师提出实际生活中的问题,学生会很自然地想到用抛硬币的方法。
教师追问:为什么用这种方法呢?学生:这样做公平,能保证可能性一样大。
教师归纳:用抛掷硬币的方法选择场地是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜想到这两个随机事件发生的可能性是一样的,各占一半,那么,这种直觉是否真的是正确的呢?在本次活动中教师应重点关注:(1)学生是否会想到用抛硬币的方法来解决;(2)学生是否有进一步探究的欲望和参与意识。
设计意图:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础。
§3.1.2 概率的意义, 并能利用概率知识正确解释现实生活中的实际问题. 重点: 概率意义的理解和应用..通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.随机事件、必然事件、不可能事件的概念随机事件及其概率,概率与频率的区别和联系.【探究新知】(一): 概率的正确理解思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?可见,随机事件在一次实验中发生与否是随机的,但是随机性中含有________.认识了这种随机性中的规律性,就能使我们比较准确的预测随机事件发生的________.概率只是度量事件发生的可能性的________,不能确定是否发生.思考3: 围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.思考5:如果某种彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖吗?为什么?【探究新知】:概率思想的实际应用思考1:在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?思考2:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?思考3:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。
由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?在一次试验中________ 的事件称为小概率事件, ________ 的事件称为大概率事件.如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.思考4:天气预报是气象专家依据观测到的气象资料和专家们的实际经验,经过分析推断得到的.某地气象局预报说,明天本地降水概率为70%,能否认为明天本地有70%的区域下雨,30%的区域不下雨?你认为应如何理解?思考5:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?思考6: 在遗传学中有下列原理:(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.(2)用符YY代表纯黄色豌豆的两个特征,符yy代表纯绿色豌豆的两个特征.(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:Yy.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为:YY,Yy,yy.(4)对于豌豆的颜色来说.Y是显性因子,y是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即YY,Yy都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即yy呈绿色.在第二代中YY,Yy,yy出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?【例题讲评】例题1 高一一名姚明fancy在篮球赛中的进球率为80%。
备课资料1.概率论的产生,还有一段名声不好的故事.17世纪的一天,保罗与著名的赌徒梅尔赌钱,他们事先每人拿出6枚金币,然后玩,约定谁先胜三局谁就得到12枚金币.比赛开始后,保罗胜了一局,梅尔胜了两局,这时一件意外的事中断了他们的赌博.于是,他们商量这12枚金币应该怎样合理地分配.保罗认为,根据胜利的局数,他自己应得总数的31,即4枚金币,梅尔应得总数的32,即8枚金币.但精通赌博的梅尔认为他赢的可能性大,所以他应该得到全部的金币,于是他们请求数学家帕斯卡评判.帕斯卡得到答案后,又求教于数学家费尔马.他们的一致裁决是:保罗应分得3枚金币,梅尔应分得9枚金币.试问:1.你知道数学家帕斯卡和费尔马当时各自是怎样考虑和解决的吗?2.你对数学家帕斯卡和费尔马了解多少?思路:帕斯卡是这样解决的:如果再玩一局,或是梅尔胜,或是保罗胜.如梅尔胜,那么他可以得到全部的金币(记为1),如果保罗胜,那么两人各胜两局,应各得金币的一半(记为21).由于这一局中两人获胜的可能性相等,因此梅尔得金币的可能性应是两种可能性大小的一半,记梅尔为(1+21)÷2=43,保罗为(0+21)÷2=41.所以他们各得9枚和3枚金币.帕斯卡1623—1662法国 费尔马1601—1665法国费尔马是这样考虑的:如果再玩两局,会出现四种可能的结果:(梅尔胜,保罗胜);(保罗胜,梅尔胜);(梅尔胜,梅尔胜);(保罗胜,保罗胜).其中前三种结果都是梅尔取胜,只有第四种结果才能使保罗胜,所以梅尔取胜的概率为43,保罗取胜的概率为41.因此梅尔应得9枚金币,而保罗应得3枚金币.这和帕斯卡的答案一致.帕斯卡和费尔马还研究有关这类随机事件的更一般的规律,由此开始了概率论的早期研究工作.2.在密码的编制和破译中,概率论起着重要的作用.要使敌人不能破译电文而又能使盟友容易译出电文,一直是外交官和将军们关心的问题.为了保密,通讯双方事先有一个秘密约定,称为密钥.发送信息方要把发出的真实信息——明文,按密钥规定,变成密文.接收方将密文按密钥还原成明文.例如,古罗马伟大的军事和政治家凯撒大帝把明文中的每个字母按拉丁字母次序后移三位之后的字母来代替,形成密文.接收方收到密文后,将每个字母前移三位后便得到明文.这是一种原始的编制密码方法,很容易破译.在书面语言中单个的字母不是以同样的频率出现的.从例1中英文字母出现频率的统计表中我们可以看出,在英文常用文章中,平均说来出现字母“E”的频率约为10.5%,“T”约为7.1%,而“J”的出现远小于1%.例如像凯撒大帝用过的简单密码,用FRGHV 来代替CODES,容易通过对电文中字母的频率分析来破译.出现频率最高的字母大概表示“E”,出现频率次高的字母大概是“T”,等等.现代保密系统采用了能确保每个字母出现在密文中的概率都相等的技术.一种理论上不可破译的密码是“一次性密码本”(用后立即销毁).这种密码本是一长串的随机数,每个都在1和26之间.这样一种密码本可能从以下数开始:19,7,12,1,3,8,….如“ELEVEN”这个词,用按字母表顺序排在E后面第19个字母表示而用L后面第7个字母表示L,等等.因此,ELEVEN变成了XSQWHV.注意,尽管在明文中“E”出现3次,但是在密文XSQWHV中却是用三个不同的字母来替换的.3.概率天气预报是用概率值表示预报量出现可能性的大小,它所提供的不是某种天气现象的“有”或“无”、某种气象要素值的“大”或“小”,而是天气现象出现的可能性有多大.如对降水的预报,传统的天气预报一般预报有雨或无雨,而概率预报则给出可能出现降水的百分数,百分数越大,出现降水的可能性越大.概率天气预报既反映了天气变化确定性的一面,又反映了天气变化的不确定性和不确定程度.在许多情况下,这种预报形式更能适应经济活动和军事活动中决策的需要.请问同学们对概率天气预报如概率降水预报了解多少?答案:概率,通俗地讲就是某件事发生的可能性,用0—1之间的一个小数表示,概率愈大,某事件发生的可能性也就愈大.降水概率预报,顾名思义就是一种未来出现降水可能性大小的预报.为方便用户使用,降水概率一般用百分数表示,与常规降水预报不同的是,它预报的不是降水的有、无,而是出现降雨的概率.在实际应用时,一般以50%作为“参考点”,当降水概率低于50%时,概率愈小,降水的可能性也就愈小;当降水概率高于50%时,概率愈大,降水的可能性也就愈大;如果降水概率正好是50%左右时,有雨和无雨的可能性大致相当,这时就没有使用意义了.不过,在我们的概率预报中,是不会出现这种情况的,这是因为当降水概率出现在50%附近时,我们会运用多种手段,作出更进一步分析,将有应用价值的结论提供给人们使用.4.背景材料:记者梁红英报道本报讯 2004年2月3日晚6点19分,一彩民购买的“江浙沪大乐透”彩票,同时中出10注一等奖,独揽48 571 620元巨额奖金,创下了中国彩票史上个人一次性奖额之最.……据有关人士介绍,该彩民当时花了200元买下100注“江浙沪大乐透”彩票,分成10组,每组10注,每组的自选号码相同.结果,其中1组所选号码与前晚“江浙沪大乐透”2004015期开奖号码完全一致.记者江世亮报道本报讯……对于这种似乎不可能发生事件的发生,从数学概率论上将作何解释?为此记者于昨日午夜电话联线采访了本市一位数学建模专家……博士说,以他现在不完全掌握的情况来分析,像这位幸运者同时获得10个大奖的概率,可称得上一次万亿分之一的事件,通俗讲就是接近于零.……国外的中奖者完全是基于运气,很多人往往是因为找不出零钱,而在加油站等处随手买一张而中的奖.上面是文汇报2004年2月5日登载的两条消息,对其中提到的“一次万亿分之一的事件”,我们该作何理解呢。
3.1.2【课题】:概率的意义【教学目标】:(1)通过实例正确理解概率的意义(2)了解概率在实际问题中的应用,增强学生学习的兴趣(3)通过教学培养学生的发现探究探索规律的能力【教学重点】:概率在实际问题中的应用【教学难点】:理解概率与频率的联系与区别【教学突破点】:如何让学生发现认识随机试验结果的随机性和概率的确定性【教法、学法设计】:开放合作探究式教学【课前准备】:投影片【教学过程设计】:教学环节教学活动设计意图一复习旧知二师生互动师:上一节课我们学习了什么知识啊?师生共答:1日常生活中的必然事件,随机事件,确定事件,不可能事件2必然事件,不可能事件,随机事件的定义,以及“频率”和“概率”的联系和区别3定义:一般地,在大量重复进行同一试验时,事件A发生的频率总是接近某个常数,在它附近摆动,这时就把这个mn常数叫做事件的概率,记作.A()P A(1) 频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的随机事件出现的可能性.(2) 概率是一个客观常数,它反映了随机事件的属性.大量重复试验时,任意结果(事件) 出现的频率尽管是随机A的,却”稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小.这一常数就成为该事件的概率.师:下面我们从以下几个事例来理解概率的意义①彩票中奖概率为1/1000,买1000张彩票一定能中奖吗?②男女出生率一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比因当是1:1,可事实并非如此.公元1814年,法国数学家拉普拉斯(Laplace 1794---1827)在他的新作<<概率的哲学探讨>>一书中,记载了一下有趣的统计.他根据伦敦,彼得堡,柏林和全法国的统计资料,得出了几乎完全一致的男婴和女婴出生数的比值是22:21,即在全体出生婴儿中,男婴占51.2%,女婴占48.8%.可奇怪的是,当他统计1745---1784整整四十年间巴黎男婴出生率时,却得到了另一个比是25:24,男婴占51.02%,与前者相差0.14%.对于这千分之一点四的微小差异!拉普巩固旧知,温故知新引导学生讨论思考,目的在于使学生更清楚地理解概率的意义这里可以让学生之间互动交流三拓展四学生老师归纳小结五课后作拉斯对此感到困惑不解,他深信自然规律,他觉得这千分之一点四的后面,一定有深刻的因素.于是,他深入进行调查研究,终于发现:当时巴黎人”重男轻女”,又抛弃女婴的陋俗,以至于歪曲了出生率的真相,经过修正,巴黎的男女婴的出生比率依然是22:21.③抽签器决定发球权公平吗?④决策中的概率思想。
3.1.2 概率的意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材,回答下列问题.(1)抛掷一枚硬币出现正面的概率为0.5,是不是可以说连续抛掷一枚质地均匀的硬币两次,一定是一次正面朝上,一次反面朝上呢?提示:.(2)乒乓球比赛前,裁判怎样确定发球权?提示:.(3)如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子质地均匀吗?为什么?提示:.(4)某气象局预报说昨天本地降水概率为90%,结果连一滴雨都没下,这是不是说天气预报不准确?提示:.2.归纳总结,核心必记(1)对概率的正确理解随机事件在一次试验中发生与否是的,但随机性中含有,认识了这种随机性中的,就能使我们比较准确地预测随机事件发生的.(2)实际问题中几个实例①游戏的公平性(ⅰ)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球权的概率均为,所以这个规则是的.(ⅱ)在设计某种游戏规则时,一定要考虑这种规则对每个人都是的这一重要原则.②决策中的概率思想如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一.③天气预报的概率解释天气预报的“降水概率”是事件的概率,其指明了“降水”这个随机事件发生的可能性的.④试验与发现概率学的知识在科学发展中起着非常重要的作用,例如,奥地利遗传学家孟德尔利用豌豆所做的试验,经过长期观察得出了显性与隐性的比例接近,而对这一规律进行深入研究,得出了遗传学中一条重要的统计规律.⑤遗传机理中的统计规律孟德尔通过收集豌豆试验数据,寻找到了其中的统计规律,并用概率理论解释这种统计规律.利用遗传定律,帮助理解概率统计中的随机性与的关系,以及频率与的关系.[问题思考](1)随机事件A的概率P(A)能反映事件A发生的确切情况吗?提示:.(2)随机事件在一次试验中是否发生与概率的大小有什么关系?提示:.知识点1 对概念的理解“双色球有中出两注500万头奖”,听到这个消息总让人心里痒痒的,想必谁都做过中500万的梦吧![思考1]买一张彩票一定中奖吗?提示:[思考2]若中奖率为1%,是不是只要买100张彩票就中奖一次?提示:[思考3]怎样理解概率?提示:讲一讲1.某医院治疗一种疾病的治愈率为10%,那么,前9个病人都没有治愈,第10个病人就一定能治愈吗?【类题通法】(1)随机事件在一次试验中发生与否是随机的,但随机性中含有规律性:随着试验次数的增加,该随机事件发生的频率会越来越接近于该事件发生的概率.(2)概率是描述随机事件发生的可能性大小的一个度量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.练一练1.有以下一些说法:①昨天没有下雨,则说明“昨天气象局的天气预报降水概率为95%”是错误的;②“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖;③做10次抛掷硬币的试验,结果3次正面朝上,因此正面朝上的概率为310;④某厂产品的次品率为2%,但该厂的50件产品中可能有2件次品.其中错误说法的序号是________.知识点2 游戏的公平性讲一讲2.某校高二年级(1)(2)班准备联合举行晚会,组织者欲使晚会气氛热烈、有趣,策划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负者表演一个节目.(1)班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?类题通法游戏公平性的标准及判断方法(1)游戏规则是否公平,要看对游戏的双方来说,获胜的可能性或概率是否相同.若相同,则规则公平,否则就是不公平的.(2)具体判断时,可以求出按所给规则双方的获胜概率,再进行比较.练一练2.现共有两个相同的卡通玩具,展展、宁宁、凯凯三个小朋友都想要.他们采取了这样的办法分配玩具,拿一个飞镖射向如图所示的圆盘,若射中区域的数字为1,2,3,则玩具给展展和宁宁,若射中区域的数字为4,5,6,则玩具给宁宁和凯凯,若射中区域的数字为7,8,则玩具给展展和凯凯.试问这个游戏规则公平吗?知识点3 概率的应用讲一讲3.为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000 尾,给每尾鱼作上记号,不影响其存活,然后放回水库,经过适当时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数.类题通法(1)求概率:先利用频率等方法求出事件的概率.如本讲中先求出带记号的鱼的概率.(2)估计值:利用概率的稳定性,根据频率公式估计数值.如本讲中计算总体的数目,即求水库中鱼的尾数.练一练3.山东某家具厂为游泳比赛场馆生产观众座椅,质检人员对该厂所产2 500套座椅进行抽检,共抽检了100套,发现有5套次品,试问该厂所产2 500套座椅中大约有多少套次品?[对应题目练习]题组1 对概率的理解1.某工厂生产的产品合格率是99.99%,这说明( )A .该厂生产的10 000件产品中不合格的产品一定有1件B .该厂生产的10 000件产品中合格的产品一定有9 999件C .合格率是99.99%,很高,说明该厂生产的10 000件产品中没有不合格产品D .该厂生产的产品合格的可能性是99.99%2.某市的天气预报中,有“降水概率预报”,例如预报“明天降水概率为90%”,这是指( )A .明天该地区约90%的地方会降水,其余地方不降水B .明天该地区约90%的时间会降水,其余时间不降水C .气象台的专家中,有90%认为明天会降水,其余的专家认为不降水D .明天该地区降水的可能性为90%3.掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续掷到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是( )A .一定出现“6点朝上”B .出现“6点朝上”的概率大于16C .出现“6点朝上”的概率等于16D .无法预测“6点朝上”的概率4.在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为________. 5.解释下列概率的含义:(1)某厂生产的电子产品合格的概率为0.997;(2)某商场进行促销活动,购买商品满200元,即可参加抽奖活动,中奖的概率为0.6; (3)一位气象学工作者说,明天下雨的概率是0.8;(4)按照法国著名数学家拉普拉斯的研究结果,一个婴儿将是女孩的概率是2245.题组2 游戏的公平性6.小明和小颖按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你认为这个游戏规则________.(填“公平”或“不公平”)7.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,应该买这一号码,你认为他们的说法对吗? 题组3 概率的应用8.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类.在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了9 000只小蜜蜂和1 000只黑小蜜蜂,养蜂人乙在同一地区放养了1 000只小蜜蜂和9 000只黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理( )A .甲B .乙C .甲和乙D .以上都对[能力提升综合练]1.每道选择题有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是14,我每题都选择第一个选择支,则一定有3个题选择结果正确”这句话( )A .正确B .错误C .不一定D .无法解释2.玲玲和倩倩是一对好朋友,她俩都想去观看某明星的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”你认为这个游戏公平吗?答:________. 3.对某厂生产的某种产品进行抽样检查,数据如下表所示.抽查件数 50 100 200 300 500 合格件数 4792192 285 478根据表中所提供的数据,若要从该厂生产的此种产品中抽到950件合格品,大约需抽查________件产品.4.某中学从参加高一年级上学期期末考试的学生中抽出60名学生,将其成绩(均为整数)分 成六段[40,50),[50,60),…,[90,100]后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的及格率(60分及以上为及格);(2)从成绩是70分以上(包括70分)的学生中选一人,求选到第一名学生的概率(第一名学生只一人).参考答案[核心必知]1.(1)不一定.(2) 裁判员用一个抽签器决定发球权,这样做体现了公平性.(3) 这枚骰子很可能质地不均匀,也就是靠近6点的那面比较重,才更有可能出现10个1 点.(4) 概率为90%指明了“降水”这个随机事件发生的概率.由于在一次试验中,概率为90%的事件也可能不出现,因此,“昨天没有下雨”并不能说天气预报是错误的.2.(1) 随机规律性规律性可能性(2) (ⅰ) 0.5公平(ⅱ) 公平使得样本出现的可能性最大随机大小.3∶1规律性概率[问题思考](1)不能,只能反映事件A 发生的可能性的大小.(2)随机事件的概率表明了随机事件发生的可能性的大小,但并不表示概率大的事件一定发生,概率小的事件一定不发生. 知识点1[思考1] 不一定.[思考2] 不一定,可能中奖,也可能不中奖.[思考3] (1)概率是随机事件发生可能性大小的度量,是随机事件A 的本质属性,随机事件A 发生的概率是大量重复试验中事件A 发生的频率的近似值.(2)由概率的定义我们可以知道随机事件A 在一次试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映.(3)正确理解概率的意义,要清楚概率与频率的区别与联系.对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件. 讲一讲1.解 如果把治疗一个病人作为一次试验,治愈率是10%指随着试验次数的增加,有10% 的病人能够治愈.对于一次试验来说,其结果是随机的,但治愈的可能性是10%,前9个病人是这样,第10个病人仍是这样,可能治愈,也可能不能治愈,被治愈的可能性仍是10%. 练一练1.【解析】①中降水概率为95%,仍有不降水的可能,故①错;②中“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;③中正面朝上的频率为310,概率仍为12,故③错误;④中次品率为2%,但50件产品中可能没有次品,也可能有1件或2件或3件或更多次品,故④的说法正确. 【答案】①②③ 讲一讲2.解 该方案是公平的,理由如下:各种情况如下表所示:和 4 5 6 7 1 5 6 7 8 2 6 7 8 9 378910由上表可知该游戏可能出现的情况共有12种,其中两数字之和为偶数的有6种,为奇数的也有6种,所以(1)班代表获胜的概率P 1=612=12,(2)班代表获胜的概率P 2=612=12,即P 1=P 2,机会是均等的,所以该方案对双方是公平的. 练一练2.解由题知,若射中1,2,3,7,8这5个数字,展展可得到玩具,所以展展得到玩具的概率是58;同理宁宁得到玩具的概率是68=34;凯凯得到玩具的概率是58.三个小朋友得到玩具的概率不相同,所以这个游戏规则不公平. 讲一讲3.[思路点拨] 假定每尾鱼被捕的可能性是相等的,利用样本的频率近似估计总体的概率. 解 设水库中鱼的尾数为n ,n 是未知的,现在要估计n 的值.假定每尾鱼被捕的可能性是相等的,从水库中任捕一尾,设事件A ={带有记号的鱼},由概率的统计定义可知P (A )=2 000n .①第二次从水库中捕出500尾,观察每尾鱼上是否有记号,共需观察500次,其中带有记号的鱼有40尾,即事件A 发生的频数m =40,P (A )≈40500.②由①②两式,得2 000n ≈40500,解得n ≈25 000.所以,估计水库中有鱼25 000尾. 练一练3.解设有n 套次品,由概率的统计定义可知n 2 500=5100,解得n =125.所以该厂所产2 500套座椅中大约有125套次品.[对应题目练习]题组1 对概率的理解1.【解析】合格率是99.99%,是指该工厂生产的每件产品合格的可能性大小,即合格的概率. 【答案】D2.【解析】降水概率为90%,指降水的可能性为90%,并不是指降水时间,降水地区或认为会降水的专家占90%. 【答案】D3.【解析】随机事件具有不确定性,与前面的试验结果无关.由于正方体骰子的质地是均匀的,所以它出现哪一个面朝上的可能性都是相等的.【答案】C4.【解析】16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35. 【答案】0.355.解(1)生产1 000件电子产品大约有997件是合格的.(2)购买10次商品,每次购买额都满200元,抽奖中奖的可能性为0.6. (3)在今天的条件下,明天下雨的可能性是80%. (4)一个婴儿将是女孩的可能性是2245.题组2 游戏的公平性6.【解析】当第一个人第一次取2支时,还剩余3支,无论第二个人取1支还是2支,第一个人在第二次取铅笔时,都可取完,即第一个人一定能获胜.所以不公平. 【答案】不公平7.解体育彩票中标有36个号码的36个球大小、重量是一致的,严格地说,为了保证公平,每次用的36个球,应该只允许用一次,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,上述两种说法都是错的.8.【解析】从放蜂人甲放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为110,而从放蜂人乙放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为910,所以,现在捕获的这只小蜜蜂是放蜂人乙放养的可能性较大.故选B. 【答案】B[能力提升综合练]1.【解析】解答一个选择题作为一次试验,每次选择的正确与否都是随机的.经过大量的试验,其结果呈随机性,即选择正确的概率是14.做12道选择题,即进行了12次试验,每个结果都是随机的,不能保证每题的选择结果都正确,但有3题选择结果正确的可能性比较大.同时也有可能都选错,亦或有2题,4题,甚至12个题都选择正确. 【答案】B2.【解析】两枚硬币落地共有四种结果:正,正;正,反;反,正;反,反.由此可见,她们两人得到门票的概率是相等的,所以公平. 【答案】公平3.【解析】由表中数据知:抽查5次,产品合格的频率依次为0.94,0.92,0.96,0.95,0.956,可见频率在0.95附近摆动,故可估计该厂生产的此种产品合格的概率约为0.95.设大约需抽查高中数学必修三导学案11 n 件产品,则950n≈0.95,所以n ≈1 000. 【答案】1 0004.解(1)依题意,60分及以上的分数所在的第三、四、五、六组的频率和为(0.015+0.03+0.025+0.005)×10=0.75,所以,这次考试的及格率约为75%.(2)成绩在[70,100]的人数是36.所以从成绩是70分以上(包括70分)的学生中选一人,选到第一名学生的概率P =136.。
高二理科数学《3.1.2 概率的意义》一、教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(3)正确理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系;(4)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.二、重点与难点:(1)教学重点:概率的定义以及意义;(2)教学难点:用概率的知识解释现实生活中的具体问题.三、教学设想:1.概率的定义是什么?对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A) 稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。
2.频率与概率的有什么区别和联系?①频率是随机的,在实验之前不能确定;②概率是一个确定的数,与每次实验无关;③随着实验次数的增加,频率会越来越接近概率。
④频率是概率的近似值,概率是用来度量事件发生可能性的大小探究(一):概率的正确理解探究(二):概率思想的实际应用小结作业1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.作业:<习案>作业三十用心爱心专心。
3. 1.2概率的意义一、教材分析(1)正确理解概率的含义。
在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:①试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正“连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上”的错误认识;通过从盒子中摸球的试验,解释中奖概率为的含义,纠正“如果中奖率为,那么买1000张彩票一定能中奖”的错误认识。
②随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。
(2)了解概率在实际问题中的应用。
①概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。
可以从正反两个方面举例让学生进行判断。
②概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。
这种思想是“风险与决策”中经常使用的。
③概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。
二、教学目标1.从频率稳定性的角度,了解概率的意义.2.学生经历试验,统计,分析,归纳,总结,进而了解并感受概率的定义的过程,引导学生从数学的视角,观察客观世界;用数学的思维,思考客观世界;以数学的语言,描述客观世界.3.学生经历试验,整理,分析,归纳,确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准,新颖,独特的思维方式所震撼..三、教学重点难点重点:概率的正确理解。
难点:用概率知识解决现实生活中的具体问题。
四、学情分析回忆上节课有关概率的定义,通过试验解释概率的含义,纠正日常生活中的一些错误认识,介绍概率与公平性、概率与决策、概率与预报方面的实例。
五、教学方法1.举例法2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:预习课本,初步把握概率的定义。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
1在条件S下进行n次重复实验,事件A出现的频数和频率的含义分别如何?2.概率是反映随机事件发生的可能性大小的一个数据,概率与频率之间有什么联系和区别?它们的取值范围如何?联系:概率是频率的稳定值;区别:频率具有随机性,概率是一个确定的数;范围:[0,1].3.大千世界充满了随机事件,生活中处处有概率.利用概率的理论意义,对各种实际问题作出合理解释和正确决策,是我们学习概率的一个基本目的.(三)合作探究、精讲点拨。
1.概率的正确理解思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”.思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?探究:试验:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向.将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律?“两次正面朝上”的频率约为0.25,“两次反面朝上”的频率约为0.25,“一次正面朝上,一次反面朝上”的频率约为0.5.思考3:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.不一定.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能没有一次摸到黑子,摸到黑子的概率为1-0.910≈0.6513思考4:如果某种彩票的中奖概率为 0.001,那么买1000张这种彩票一定能中奖吗?为什么?不一定,理由同上. 买1 000张这种彩票的中奖概率约为1-0.9991000≈0.632,即有63.2%的可能性中奖,但不能肯定中奖.2.游戏的公平性在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?裁判员拿出一个抽签器,它是-个像大硬币似的均匀塑料圆板,一面是红圈,一面是绿圈,然后随意指定一名运动员,要他猜上抛的抽签器落到球台上时,是红圈那面朝上还是绿圈那面朝上。
如果他猜对了,就由他先发球,否则,由另一方先发球. 两个运动员取得发球权的概率都是0.5.探究:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。
由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?(图参考课本115页)不公平,因为各班被选中的概率不全相等,七班被选中的概率最大.3.决策中的概率思想思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考课本115页)这枚骰子的质地不均匀,标有6点的那面比较重,会使出现1点的概率最大,更有可能连续10次都出现1点. 如果这枚骰子的质地均匀,那么抛掷一次出现1点的概率为,连续10次都出现1点的概率为这是一个小概率事件,几乎不可能发生.如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.4.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?明天本地有70%的区域下雨,30%的区域不下雨?明天本地下雨的机会是70%降水概率≠降水区域;明天本地下雨的可能性为70%.答案参考课本117页思考:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?不能,概率为90%的事件发生的可能性很大,但“明天下雨”是随即事件,也有可能不发生.收集近50年同日的天气情况,考察这一天下雨的频率是否为90%左右.5试验与发现奥地利遗传学家孟德尔从1856年开始用豌豆作试验,他把黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,他把第一年收获的黄色豌豆再种下,收获的豌豆既有黄色的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年收获的豌豆都是圆形的.第二年,他把第一年收获的圆形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第一年长出来的都是长茎的豌豆. 第二年,他把这种杂交长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌豆.试验的具体数据如下:豌豆杂交试验的子二代结果你能从这些数据中发现什么规律吗?孟德尔的豌豆实验表明,外表完全相同的豌豆会长出不同的后代,并且每次试验的显性与隐性之比都接近3︰1,这种现象是偶然的,还是必然的?我们希望用概率思想作出合理解释.6.遗传机理中的统计规律在遗传学中有下列原理:(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.(2)用符号AA代表纯黄色豌豆的两个特征,符号BB代表纯绿色豌豆的两个特征.(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:AB.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为: AA,AB,BB.(4)对于豌豆的颜色来说.A是显性因子,B是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即AA,AB都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即BB呈绿色.在第二代中AA,AB,BB出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?P(AA)=0.5×0.5=0.25 p(BB)=0.5×0.5=0.25P(AB)=1-0.25-0.25=0.5黄色豌豆(AA,AB)︰绿色豌豆(BB)≈3︰1(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。
(课堂实录)(五)发导学案、布置预习。
我们已经学习了概率的意义,那么,概率还具有那些性质呢?在下一节课我们一起来学习概率的基本性质。
这节课后大家可以先预习这一部分,如何得出恰当的结论的。
并完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。
教师课后及时批阅本节的延伸拓展训练。
九、板书设计1.概率的正确理解2.游戏的公平性3.决策中的概率思想4.天气预报的概率解释5试验与发现十、教学反思本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。
课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!十一、学案设计(见下页)3.1.2概率的意义课前预习学案一、预习目标1.从频率稳定性的角度,了解概率的意义.2.怎样从数量上刻画一个随机事件发生的可能性的大小.二、预习内容知识生成:1.概率的正确理解:概率是描述随机事件发生的的度量,事件A的概率P(A)越大,其发生的可能性就越;概率P(A)越小,事件A发生的可能性就越.2.概率的实际应用:知道随机事件的概率的大小,有利我们做出正确的,还可以某些决策或规则的正确性与公平性.3.游戏的公平性:应使参与游戏的各方的机会为等可能的, 即各方的相等, 根据这一要求确定游戏规则才是的.4.决策中的概率思想:以使得样本出现的最大为决策的准则.5.天气预报的概率解释:降水的概率是指降水的这个随机事件出现的,而不是指某些区域有降水或能不能降水.6.遗传机理中的统计规律: (看书P118)三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标1.概率的正确理解;2.概率思想的实际应用.二、学习重难点:重点:概率的正确理解难点:用概率知识解决现实生活中的具体问题。