第3章 信号分析与处理(3)
- 格式:pdf
- 大小:4.17 MB
- 文档页数:82
第一章 信号分析与处理的基本概念复习考点(题型:填空/问答)➢ 信号的分类(P3)信号取值是否确定:确定性信号和随机信号信号自变量取值是否连续:连续信号和离散信号信号在某一区间是否重复出现:周期信号和非周期信号信号的能量或功率是否有限:能量信号和功率信号➢ 周期信号的基本周期计算(P4,参考P5例子)()()x t x t nT =+ (0,1,2,........)n =±±式中nT 为x(t)的周期,而满足关系式的最小T 值称为信号的基本周期。
➢ 信号处理的概念、目的(P5)概念:要把记录在某种媒体上的信号进行处理,以便抽取有用信息的过程,它是对信号进行提取、变换、分析、综合等处理过程的统称。
目的:去伪存真,特征提取,编码和解码(调制与解调)➢ 系统的性质/线性系统的条件(P11-14)性质:线性(包括齐次性与叠加性),时不变性,因果性,稳定性线性系统的条件:同时具有齐次性和叠加性的系统称为线性系统。
对于动态系统满足3个条件:可分解性、零状态线性、零输入线性第二章 连续时间信号的分析复习考点(题型:填空/问答/计算)➢ 信号分析的方法 (P22)信号分析的基本方法是信号的分解,即将任意信号分解成有限个或无限个基本信号的线性组合,通过对构成信号的基本单元的分析达到了解原信号的目的。
包括时域方法,频域方法,复频域方法。
➢ 信号的频谱分类/P47 思考题2-4 (P30-31)信号的频谱包括幅度频谱和相位频谱周期信号的频谱特点:离散普,其相邻谱线的间隔是w1,改变信号的周期将改变信号的频谱的疏密程度,当周期趋于无穷大时,频谱将是连续的。
分类:➢ 带宽定义(P31)通常把()01/02/f τωπτ≤≤≤≤这段频率范围称为周期矩形脉冲信号的频带宽度,简称带宽,记做B ,1/2/B B ωτπτ==或➢ 计算题:以作业题为主第三章 连续时间信号处理复习考点(题型:填空/问答/计算)➢ 线性时不变LTI 系统定义与描述方式(P52/P61)LTI :linear time invariant定义:如果系统的输入和输出满足叠加性和齐次性,而且组成系统的各个元件的参数不随时间而变化,则称该系统为线性时不变系统,简称LTI 系统描述方式:系统微分方程,系统函数,系统冲激响应。
长春理工大学
国家级电工电子实验教学示范中心学生实验报告
——学年第学期
实验课程
实验地点
学院
专业
学号
姓名
从原音频的时域及频域图可以看出原信号的频谱分布主要在(0,7.5*10^3)Hz
引入噪声后其频谱中引入了频率约为12kHz的频率分量,是需要滤除的部分。
由设计的二阶有源低通滤波器的幅频响应曲线可知其对5khz以上的频率有较好的滤除作用。
由滤波以后的频谱可以看出其较好的滤除了噪声而保留了原信号。
滤波后的频谱的傅里叶变换得到的时域波形与原信号的时域波形几乎一致,说明滤波效果较好。
信号分析与处理基础信号分析与处理是电子信息技术领域中的重要内容之一,它涉及到信号的分析、处理与应用等多个方面。
在现代科学技术的发展中,信号分析与处理技术的应用越来越广泛,对于提高各种仪器设备的性能和精度,改进各类信号传输的质量和速率,优化各类信号的传输和处理方式,具有重要的意义。
信号是指随时间变化的物理量,它可以用来表示各种信息,比如声音、图像、视频、数据等。
信号可以是连续的,也可以是离散的,可以是时域的,也可以是频域的。
为了更好地理解信号的特性和进行有效的处理,需要进行信号的分析。
信号的分析是指对信号的特性进行分析,包括时域和频域的分析。
时域分析主要关注信号随时间的变化规律,通过研究信号的幅值、频率、相位等参数,可以得出信号的时域特性。
频域分析则是将信号从时域转换为频域,研究信号的频谱特性,包括信号的频率成分、频谱的能量分布等。
信号处理是对信号进行处理、转换、增强或提取等操作的过程,它可以分为模拟信号处理和数字信号处理两种。
模拟信号处理是指对模拟信号进行滤波、放大、调节等操作,它主要应用于模拟电路、通信系统等领域。
数字信号处理是指对离散信号进行数字化、滤波、谱分析等处理,它主要应用于数字通信、图像处理、音频处理等领域。
信号处理技术可以提高信号的质量和可靠性,除了基本的滤波、放大、调节等操作之外,还包括噪声抑制、压缩编码、特征提取等高级处理方法。
信号处理技术在很多领域和行业有着广泛的应用。
在通信领域,信号处理技术可以用于调制解调、多路复用、编码解码等操作,提高通信系统的容量和效率。
在图像和视频处理领域,信号处理技术可以用于图像压缩、图像增强、图像识别等操作,提高图像和视频的质量和清晰度。
在音频处理领域,信号处理技术可以用于音频编码、音频增强、语音识别等操作,提高音频的保真度和辨识度。
在控制系统领域,信号处理技术可以用于控制系统的测量、滤波、校准等操作,提高控制系统的精度和稳定性。
总之,信号分析与处理是电子信息技术领域中非常重要的一部分,它能够提高仪器设备的性能和精度,改进信号传输的质量和速率,优化信号的传输和处理方式。
信号分析与处理方法及应用摘要信号是通信系统在运行过程中各种随时间变化的动态信息,经各种测试仪器拾取并记录和存储下来的数据或图像。
信号处理与分析技术则是工业发展的一个重要基础技术。
随着各行各业的快速发展和各种各样的应用需求,信号分析和处理技术在信号处理速度、分辨能力、功能范围以及特殊处理等方面将会不断进步,新的处理激素将会不断涌现。
当前信号处理的发展主要表现在:1.新技术、新方法的出现;2.实时能力的进一步提高;3.高分辨率频谱分析方法的研究三方面。
信号处理的发展与应用是相辅相成的,工业方面应用的需求是信号处理发展的动力,而信号处理的发展反过来又拓展了它的应用领域。
机械信号的分析与处理方法从早期模拟系统向着数字化方向发展。
在几乎所有的通信领域中,它一直是一个重要的研究课题。
随着信息技术的不断发展和信息技术应用领域的不断扩展,这门课程已经从电子信息工程类专业的专业基础课程扩展成电子信息、自动控制、电子技术、电气工程、计算机技术、生物医学工程等众多电类专业的专业基础课程,甚至在很多非电专业中也设置了这门课程。
而其内容也从单一的电系统分析扩展到许多非电系统分析。
虽然各个专业开设这门课程时的侧重点会有所不同,应用背景也有差异,但是,本课程所提练的信号与系统的分析与处理的基本理论与基本方法是通用的。
关键词:信号系统与处理信号分析电子信息第一章、信号系统的分析“信号分析与处理”这门课程正是近几年来在适应信息学科迅速发展、相应基础理论教学要求不断更新的情况下,形成的一门新课程。
它整合了“信号与系统分析”和“数字信号处理”两门课程体系彼此存在的内存联系,注重了与“自动控制理论”的分工,从电子信息学科的基本任务出发,以信号分析为基础,系统分析为桥梁,处理技术为手段,设计系统为目的,实现原理、方法和应用三结合,把系统分析与设计系统服从于信号交换与处理的需要,从根本上改变了传统的以系统分析为主、信号处理为辅的状况,加强了两门课程之间的联系。
第3章信号分析及处理3.1 知识要点3.1.1数字信号处理基础1.数字信号处理的基本步骤有哪些?(1)信号的预处理:是指在数字处理之前,把信号变成适于数字处理的形式,以减小数字处理的困难。
(2)A/D转换:是将预处理以后的模拟信号经采样、量化并转换为二进制数的过程。
(3)分析计算:对采集到的数字信号进行分析和计算,可用数字运算器件组成信号处理器完成,也可用通用计算机。
(4)结果显示:一般采用数据和图形显示结果。
2.什么是时域采样?采样定理的内容是什么?采样相当于在连续信号上“摘取”一系列离散的瞬时值,是利用采样脉冲序列从连续时间信号中抽取一系列离散样值,使之成为采样信号的过程,是把连续时间信号变成离散时间序列的过程。
为了保证采样后的信号能真实地保留原始模拟信号的信息,使采样后的信号仍可准确的恢复其原始信号,采样信号的频率必须至少为原信号中最高频率成分的2倍,这一基本法则,称为采样定理。
3.什么是量化和量化误差?把采样信号经过舍入或截尾的方法变为只有有限个有效数字的数字信号,即从一组有限个离散电平中取一个来近似代表采样点的信号实际幅值电平,这一过程称为量化。
由量化引起的信号量化电平与信号实际电平之间的差值称为量化误差。
4.什么是混叠、截断和泄漏?由于采样信号频谱发生变化,而出现高、低频成分发生混淆的一种现象叫混叠。
截断就是将信号乘以时域的有限宽矩形窗函数。
截断后信号的能量在频率轴分布扩展到现象称为泄漏。
5.什么是窗函数?常用的窗函数有哪些?各有何特点?如何选择?为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数。
常用的窗函数有矩形窗、三角窗、汉宁(Hanning)窗、海明(Hamming)窗、高斯窗。
(1)矩形窗:优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。
(2)三角窗:三角窗与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣。
信号分析与处理一、引言信号是一种包含信息的物理量,广泛应用于通信、控制、生物医学等领域。
信号分析与处理是指对信号进行采集、处理和提取信息的过程,是数字信号处理的核心内容之一。
本文将介绍信号的基本概念、常见信号类型、信号处理方法及在工程实践中的应用。
二、信号的基本概念1. 信号的定义信号是随时间、空间或其他独立变量而变化的物理量。
根据信号的性质,可以将信号分为连续信号和离散信号两类。
连续信号是在连续时间范围内定义的信号,通常用数学函数表示;离散信号是在离散时间点上定义的信号,通常用序列表示。
常见的连续信号包括正弦信号、余弦信号等,离散信号包括单位阶跃信号、单位脉冲信号等。
2. 信号的分类根据信号的周期性、能量特性等可将信号分为周期信号和非周期信号、能量信号和功率信号等。
周期信号具有固定的周期性,在一个周期内重复;非周期信号则没有明显的周期性。
能量信号的总能量是有限的,功率信号的总能量是无穷大的,通常用能量谱和功率谱来表示。
三、信号处理方法1. 时域分析时域分析是对信号随时间变化的分析,常用的方法包括时域波形分析、自相关函数、互相关函数等。
时域波形分析通常用于观察信号的波形特征,自相关函数用于描述信号的自相似性,互相关函数则用于衡量两个信号之间的相关性。
2. 频域分析频域分析是对信号在频率域上的分析,可通过傅里叶变换将信号从时域转换到频域。
常用的频域分析方法包括频谱分析、滤波、功率谱估计等。
频谱分析可展示信号在频率上的组成结构,滤波用于调整信号的频率成分,功率谱估计可用于估计信号的功率分布。
四、工程实践应用1. 通信领域在通信系统中,信号分析与处理是保证通信质量的关键。
通过对信号的差错控制、调制解调、信道估计等处理,可以实现可靠的通信传输。
信号处理方法如多址调制、信道编码在通信系统中得到广泛应用。
2. 控制领域在控制系统中,信号处理用于对传感器采集的信号进行滤波、增强和解调,以实现系统的自动控制。
PID控制器、自适应控制等控制算法的设计离不开对信号的分析与处理。