信号分析第三章答案
- 格式:doc
- 大小:1.07 MB
- 文档页数:17
第三章习题3.1、试求序列k01(k)=2f ⎧⎪⎛⎫⎨ ⎪⎪⎝⎭⎩, 的差分(k)f ∆、(k)f ∇和i=-(i)kf ∞∑。
3.6、求下列差分方程所描述的LTI 离散系统的零输入相应、零状态响应和全响应。
1)()-2(-1)(),()2(),(-1)-1y k y k f k f k k y ε===3)()2(-1)(),()(34)(),(-1)-1y k y k f k f k k k y ε+==+= 5)1()2(-1)(-2)(),()3()(),(-1)3,(-2)-52k y k y k y k f k f k k y y ε++====3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)()-(-2)()=y k y k f k5)()-4(-1)8(-2)()+=y k y k y k f k3.9、求图所示各系统的单位序列响应。
(a)(c)3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)12()()f k f k *(2)23()()f k f k *(3)34()()f k f k *(4)[]213()-()()f k f k f k *3.13、求题3.9图所示各系统的阶跃响应。
3.14、求图所示系统的单位序列响应和阶跃响应。
3.15、若LTI 离散系统的阶跃响应()()()0.5k g k k ε=,求其单位序列响应。
3.16、如图所示系统,试求当激励分别为(1)()()f k k ε= (2)()()0.5()kf k k ε=时的零状态响应。
3.18、如图所示的离散系统由两个子系统级联组成,已知()1=2cos4k h k π,()()2=k h k k a ε,激励()()()=--1f k k a k δδ,求该系统的零状态响应()zs k y 。
(提示:利用卷积和的结合律和交换律,可以简化运算。
)3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为()()1=h k k ε,()()2=-5h k k ε,求复合系统的单位序列响应。
信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。
解已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
第一章信号与系统(二)1-1画出下列各信号的波形【式中r(t)t(t)】为斜升函数。
(2)f(t) et t(3)f(t)sin( t) (t)(4)f (t) (sint)(5)f(t)r(sin t)(7)f(t) 2k (k)(10f(k) [1 ( 1)k] (k))解:各信号波形为(2)f(t) e N, t(3)f(t)sin( t)(t)(4)f(t)(s int)(5)f(t)r(si n t)(7)f(t)2k (k)(10)f(k)[1 (1)k] (k)1-2画出下列各信号的波形[式中r(t) t (t)为斜升函数]。
(1)f(t) 2 (t 1) 3 (t 1) (t 2) (2)f (t) r(t) 2r(t 1) r(t 2)(5)f (t) r(2t) (2 t) (8)f(k) k[ (k) (k 5)](11) f(k) ksin( )[ (k) (k 7)]6(12)f(k) 2k[ (3 k) ( k)]解:: 各信号波「形为(1) f(t) 2 (t 1) 3 (t 1) (t 2)(2) f(t) r(t) 2r(t 1) r(t2)(5) f(t)r(2t) (2 t)(8)f(k)k[ (k) (k 5)](11)f(k)ksin( § )[ (k) (k7)](12) f(k) 2k [ (3 k) ( k)]1-3写出图1-3所示各波形的表达式。
1-4写出图1-4所示各序列的闭合形式表达式。
1-5判别下列各序列是否为周期性的。
如果是,确定其周期。
Q■(2) f 2(k) cos(- k ) cos(—k )(5) f 5(t)3cost 2sin( t)4 4 3 6解:1-6已知信号f(t)的波形如图1-5所示,画出下列各函数的波形。
(6)f(0.5t 2)(1) f(t 1) (t) (2) f(t 1) (t 1) (5) f (1 2t)df (t) t(7) K ( 8) f(X)dx解:各信号波形为(1)f(t 1) (t)(2)f(t 1) (t 1)(5)f(1 2t)(6) f (0.5t 2)df(t)(7)dtt(8) f (x)dx1-7已知序列f(k)的图形如图1-7所示,画出下列各序列的图形。
第三章离散傅里叶变换及其快速算法习题答案参考3.1 图P3.1所示的序列(xn 是周期为4的周期性序列。
请确定其傅里叶级数的系数(X k。
解:(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.2 (1设(xn 为实周期序列,证明(x n 的傅里叶级数(X k 是共轭对称的,即*((X k X k =− 。
(2证明当(xn 为实偶函数时,(X k 也是实偶函数。
证明:(1 111**((([(]((N nk N n N N nk nkNNn n Xk x n W Xk x n W xn W X−−=−−−==−=−===∑∑∑ k(2因(xn 为实函数,故由(1知有 *((Xk X k =− 或*((X k X k −= 又因(xn 为偶函数,即((x n x n =− ,所以有(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.3 图P3.3所示的是一个实数周期信号(xn 。
利用DFS 的特性及3.2题的结果,不直接计算其傅里叶级数的系数(Xk ,确定以下式子是否正确。
(1,对于所有的k; ((10Xk X k =+ (2((Xk X k =− ,对于所有的k; (3; (00X=(425(jkX k eπ,对所有的k是实函数。
解:(1正确。
因为(x n 一个周期为N =10的周期序列,故(X k 也是一个周期为N=10的周期序列。
(2不正确。
因为(xn 一个实数周期序列,由例3.2中的(1知,(X k 是共轭对称的,即应有*((Xk X = k −,这里(X k 不一定是实数序列。
(3正确。
因为(xn (0n ==在一个周期内正取样值的个数与负取样值的个数相等,所以有 10(0N n Xx −=∑ (4不正确。
、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω? ③求()X t 和()Y t 的互谱密度()XY G ω? ④求()X t 和()Z t 的互相关函数()XZ R τ? ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。
解已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
第三章习题3.1、试求序列k01(k)=2f ⎧⎪⎛⎫⎨ ⎪⎪⎝⎭⎩, 的差分(k)f ∆、(k)f ∇和i=-(i)kf ∞∑。
3.6、求下列差分方程所描述的LTI 离散系统的零输入相应、零状态响应和全响应。
1)()-2(-1)(),()2(),(-1)-1y k y k f k f k k y ε===3)()2(-1)(),()(34)(),(-1)-1y k y k f k f k k k y ε+==+= 5)1()2(-1)(-2)(),()3()(),(-1)3,(-2)-52k y k y k y k f k f k k y y ε++====3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)()-(-2)()=y k y k f k5)()-4(-1)8(-2)()+=y k y k y k f k3.9、求图所示各系统的单位序列响应。
(a)(c)3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)12()()f k f k *(2)23()()f k f k *(3)34()()f k f k *(4)[]213()-()()f k f k f k *3.13、求题3.9图所示各系统的阶跃响应。
3.14、求图所示系统的单位序列响应和阶跃响应。
3.15、若LTI 离散系统的阶跃响应()()()0.5k g k k ε=,求其单位序列响应。
3.16、如图所示系统,试求当激励分别为(1)()()f k k ε= (2)()()0.5()kf k k ε=时的零状态响应。
3.18、如图所示的离散系统由两个子系统级联组成,已知()1=2cos4k h k π,()()2=k h k k a ε,激励()()()=--1f k k a k δδ,求该系统的零状态响应()zs k y 。
(提示:利用卷积和的结合律和交换律,可以简化运算。
)3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为()()1=h k k ε,()()2=-5h k k ε,求复合系统的单位序列响应。
第三章习题参考解答3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。
解 (a) ⎰-=Ttjk dt et x Tk X 011)(1)(ωω⎰-=τω011dt AeTtjk 2121τωτωτk Sae T A k j -= )2(1Tπω=t jk k j k e e k Sa TA t x 11212)(ωωττωτ⋅=∴-∞-∞=∑3.1解 (b) ⎰-=Tt jk dt e t x Tk X 011)(1)(ωω⎰-=Tt jk dt te T A T011ω⎰--⋅=T t jk e td jk T A 012][11ωω ⎰-+-=T t jk dt e T jk Ak j A 02112ωωπkjA π2= )2(1T πω= ⎰=Tdt t x TX 0)(1)0(2A =∑∞≠-∞=+=∴)0(122)(k k t jk e kjA At x ωπ解 (c) ⎰-=Ttjk dt et x Tk X 011)(1)(ωωdt e TTtjk T T ωπ--⋅=⎰442cos1dt e e Tt k j t k j T T ][21111)1()1(44ωω+---+=⎰][)1(121][)1(1214)1(4)1(14)1(4)1(11111Tk j Tk j Tk j Tk j e ek j T e e k j T ωωωωωω++-----⋅+-⋅+--⋅=2)1sin()1(212)1sin()1(21ππππ--+++=k k k k π2)1(412)1(41-++=k Sa k Sa t jk k e k Sa k Sat x 1)2)1(2)1((41)(ωππ-++=∴∑∞-∞= )2(1T πω=解 (d) ⎰--=221)(1TT t jk n dt e t TF ωδT1=∑∞-∞==∴k tjk eTt x 11)(4ω3.2 求题图3.2所示信号的傅里叶变换。
解 (a) dt Ae X t j ⎰--=221)(ττωω2ωττSaA =解 (b) 设)()('2t x t g =,).()("2'2t x t g = τττωτωτAe AeAt g F j j 422)]([22'2-+=-τωττAA42c o s 4-⋅=由傅氏变换的微积分性质知: 0'2'22)]([)()]([)]([=⋅+=ωωπδωt g F j t g F t g F ωωττj A 12c o s 4-⋅= 0222)]([)()]([)]([=⋅+=ωωπδωt g F j t g F t x F 22c o s 14ωωττ-⋅=A 22)4(4s i n 2ωτωττ⋅=A题图3.242)(22ωττωSa A X =∴解 (c) t TT t T t A t x πεε2cos )]4()4([)(3--+=利用傅氏变换性质知:]4)2(4)2([4)(3TT Sa T T Sa AT x πωπωω-++=]4242[4πωπω-++=T Sa T Sa AT解 (d) ωωωjT Tj Ae e T Sa T AT t x F ---=2'42)]([0'4'44)]([)()]([)]([=⋅+=ωωπδωt x F j t x F t x F ]2[2ωωωωjT Tj e e T Sa j A ---=]2[)(224ωωωωωTj Tj e TSa e j A X ---=∴ 或 Tj T j ej A e TAX ωωωωω----=)1()(24解 (e) ωωωωω43454242)(T jTj eT Sa AT e T Sa AT X ---=][42442ωωωωTj Tj Tj e e e T Sa AT ---=ωωω22244Tj e T Sa jAT -=解 (f) ⎰∞--=06)(dt e e X t j t ωαω∞+-+-=0)(1t j e j ωαωαωαj +=13.3 若已知)()]([ωX t x F =,试求下列信号的傅里叶变换。
(1) )2(t tx解 ωωd dX jt tx F )()]([= )2(2)2()2(2121)]2(2[21)]2([ωωωωX d d j d dX jt tx F t tx F =⋅==(2) )3(-t tx解 ωω3)()]3([j e X t x F -=- ])([)]3([3ωωωj e X d d jt tx F -=-ωωωω33')(3)(j j e X ejX --+=(3) )3(t x -解 ωω3)()]3([j e X t x F =+ ωω3)()]3([j e X t x F --=-(4) )3()3(--t x dtdt 解 )()](['ωωX j t x F =)]([)](['ωωωX j d d j t tx F =)]()(['ωωωX X +-= ωωωω3')]()([)]3()3[(j e X X t x dtdt F -+-=--(5) )(b at x +解 ωωjb e X b t x F )()]([=+ ωωa bj e a X ab at x F )(1)]([=+(6)⎰∞-+td x ττ)23(解 令v =+23τ 则有:)23(31)(23+=⋅⎰+∞-t g dv v x t , dv v x t g t⎰∞-=)(31)( )]0()()([31)]([X j X t g F ωπδωω+=,ωωπδωω2)]0()()([31)]2([j e X j X t g F +=+ωωπδωω32)]0()3(3)3([91)]23([j e X j X t g F +=+).()0(3)3(31)23(32ωδπωωττωX e j X d x j t +=+∴⎰∞-3.4 在题图3.2(b)中取τ=T ,将)(2t x 进行周期为T 的周期延拓,得到周期信号)(t x T ,如题图3.4(a)所示;取)(t x T 的12+N 个周期构成截取函数)(t x N ,如题图3.4(b)所示。
(1) 求周期信号)(t x T 傅里叶级数系数; (2) 求周期信号)(t x T 的傅里叶变换; (3) 求截取信号)(t x N 的傅里叶变换。
解 (1) 设单个三角波脉冲为)(t x ,其傅里叶变换42)(2TSa AT X ωω=根据傅里叶级数)(1ωk X T 和傅里叶变换)(ωX 之间的关系知:1)(1)(1ωωωωk T X Tk X ==14212ωωωk a TS AT T =⋅=)2(22421212πωπω===T k Sa A T k Sa A(2) 由周期信号的傅里叶变换知:)()(2)]([11ωωδωπk k X t x F k T T -=∑∞-∞= )(22212ωωδππk k Sa A k -=∑∞-∞=)(212ωωδππk k Sa A k -=∑∞-ℵ= (3) 因为)()(∑-=-=NN n N nT t x t x∑-=-=NNn N nT t x F t x F )]([)]([ωωj n TNNn eX --=∑=)(ωωωωjN TjT T N j e ee X -+--=11)()12(ωωωT T N X 21sin )21sin()(+=422T Sa AT ω=ωωT T N 21sin )21sin(+⋅3.5 绘出下列信号波形草图,并利用傅里叶变换的对偶性,求其傅里叶变换。
(1) )()(01t t Sa t x π=(2) )()(022t t Sa t x π=[提示:参见脉冲信号和三角波信号的傅里叶变换]解(1) 2)]2()2([ωττπεπεaF S A t t A −→←--+, ∴根据对偶知:)]()([)(00t t t t t S Fa πωεπωεπ--+−→←)4(22ωττa F S A −→←解(2)根据对偶知:∴−→←Fa t t S )(2π3.6 已知)(t x的波形如题图3.6(a)所示,(1) 画出其导数)('t x 及)(''t x 的波形图;(2) 利用时域微分性质,求)(t x 的傅里叶变换;(3) 求题图3.6(b)所示梯形脉冲调制信号t t x t x c c ωcos )()(=的频谱函数。
解(1) )('t x 及)("t x 的波形如下:(2) ][1)()]([222"τωτωτωτωτωj j j j e e e e X t x F --+--== )cos 2(cos 2τωτωτ-=)()0()()()]([221'ωδπωωωX j X X t x F +==∴ωωj X )(2=]cos 2[cos 2τωτωωτ-⋅=j)()0()()()]([11ωδπωωωX j X X t x F +==∴ωωj X )(1=]2cos [cos 22τωτωτω-= (3) )(21)(21)]([c c c X X t x F ωωωω-++=3.7 求下列频谱函数的傅里叶逆变换。
(1)ωj +21解 )(]21[21t e j F t εω--=+ (2)2)2(1ωj +解 222)2(1)2(]21[+=+-=+ωωωωj j j j d d j )(])2(1[221t te j F tεω--=+∴ (3)1)2(12++ωj解 )2(21)2(21)2(112j j j j j j j ----++--=++ωωω )(]2121[]1)2(1[)2()2(21t e je j j F tj t j εω--+---=++∴ ).(sin 2t t e t ε-=(4) ω2sin 4解 ][2142sin 422ωωωj j e e j--⋅= ][222ωωj j e e j ---= )]2()2([2]2sin 4[1--+-=∴-t t j F δδω(5)21ω解 )(2]1[ωπδ=F).(')](2[21]2[ωπδωπδωj d d j t F =⋅=∴ ………(3.7.5.1) 又)(1)]([ωπδωε+=j t F).('1)](1[)]([2ωπδωωπδωωεj j d d jt t F +-=+=∴ ………(3.7.5.2) 由(3.7.5.1)、(3.7.5.2)式可知:)]([]2[12t t F tF εω-= )(2]1[21t t tF εω-=∴-]1)(2[2--=t t ε)(Sgn 21t t -=(6) 2/2sinωτωτ解 22sin)]2()2([ωτωτττετε=--+t t F)]2()2([1]2/2[sin1τετετωτωτ--+=-t t F*3.8 设输入信号为)()(4t e t x tε-=,系统的频率特性为2561)(ωωωω-++=j j H ,求系统的零状态响应。