第七章 第九节
- 格式:ppt
- 大小:2.15 MB
- 文档页数:15
第七章遗传物质的分子学基础第一节DNA作为主要遗传物质的证据⏹基因存在于染色体上⏹染色体= 27%DNA+ 6%RNA+ 66%蛋白质⏹此外,还含有少量的拟脂与无机物质。
⏹⏹20世纪40年代以来,由于微生物遗传学的发展,加上生物化学、生物物理学以及许多新技术不断被引入遗传学,促成了一个崭新的领域⏹——分子遗传学的诞生和发展。
⏹分子遗传学已拥有大量直接和间接的证据,说明DNA是主要的遗传物质,而在缺乏DNA的某些病毒中,RNA就是遗传物质。
一、DNA作为主要遗传物质的间接证⏹1、大部分DNA存在于染色体上.而RNA和蛋白质在细胞质内也很多,但成分并不稳定。
⏹2、DNA含量是恒定性每个物种不同组织的细胞不论其大小和功能如何,它们的DNA含量是恒定的,而且精子或卵子中的DNA含量正好是体细胞的一半;而细胞内的RNA和蛋白质的量在不同细胞间变化很大。
⏹3、多倍体DNA含量增加多倍体系列的一些物种,其细胞中DNA的含量随染色体倍数的增加,也呈现倍数性的递增。
⏹4、DNA在代谢上比较稳定细胞内蛋白质和RNA分子在迅速形成的同时,又不断分解。
而DNA分子则不同,原子一旦被DNA分子所摄取,则在细胞保持健全生长的情况下,保持稳定,不会离开DNA。
⏹5、用不同波长的紫外线诱发各种生物突变时,其最有效的波长均为260nm。
这与DNA所吸收的紫外线光谱是一致的,亦即在260nm处吸收最多。
这证明基因突变是与DNA分子的变异密切相关的。
⏹虽然上述间接证据有力地说明DNA是遗传物质,但并不能直接证明之。
二、DNA作为主要遗传物质的直接证据(一)细菌的转化⏹肺炎双球菌(Streptococcuspneumoniae)有两种不同的类型:⏹光滑型(S型) 被一层多糖类的荚膜所保护,具有毒性,在⏹培养基上形成光滑的菌落。
⏹粗糙型(R型) 没有荚膜和毒性,在培养基上形成粗糙的⏹菌落。
⏹在S 型和R型内还可以按血清免疫反应的不同,分成许多抗原型,常用IR、ⅡR和IS、ⅡS、ⅢS等加以区别。
科目教材版本章节(课题)主备人使用人物理人教版必修2第七章机械能守恒定律第9节实验:验证机械能守恒定律授课班级授课时间应到人数实到人数教学目标知识与技能1.要弄清实验目的,本实验为验证性实验,目的是利用重物的自由下落验证机械能守恒定律.2.要明确实验原理,掌握实验的操作方法与技巧、学会实验数据的采集与处理,能够进行实验误差的分析,从而使我们对机械能守恒定律的认识,不止停留在理论的推导上,而且还能够通过亲自操作和实际观测,从感性上增加认识,深化对机械能守恒定律的理解.3.通过学生自主学习,培养学生设计实验、采集数据,处理数据及实验误差分析的能力.过程与方法1.要明确纸带选取及测量瞬时速度简单而准确的方法.2.通过同学们的亲自操作和实际观测掌握实验的方法与技巧.3.通过对纸带的处理过程,体会处理问题的方法,领悟如何间接测一些不能直接测量的物理量的方法.4.通过实验过程使学生体验实验中理性思维的重要,既要动手,更要动脑.情感态度与价值观1.通过实验及误差分析,培养学生实事求是的科学态度,激发学生对物理规律的探知欲.2.培养学生的团结合作精神和协作意识,敢于提出与别人不同的见解.教学重点1.验证机械能守恒定律的实验原理.2.实验原理及方法的选择及掌握.教学难点实验误差分析的方法.导入新课请同学们思考,细绳的下端拴一个重球,上端固定在天花板上.把重球从平衡位置B拉到A,放开手,重球就在A、B间往复运动,如果空气阻力可以忽略不计,把铅笔放在B1的位置上,重球将沿怎样的弧线运动?它上升的最高点C1在什么地方?由此同学们得到什么启示?自主学习通过上一节课的学习,我们知道机械能守恒定律及其表达式以及其在物理学中的重要地位.一个规律的提出,不但要有理论的支持,还要由实验的验证,今天我们就设计实验,来验证机械能守恒定律.问题:1.机械能守恒定律的条件是什么?2.要验证机械能守恒应该创设什么样的问题情景?3.回顾以前学过的运动,哪种运动形式符合验证机械能守恒定律的条件? 学生通过讨论,总结:1.机械能守恒定律的条件是:物体系统只有重力或弹力做功.2.要验证机械能守恒定律,应该符合守恒条件:只有重力或弹力做功.3.自由落体运动只受重力,符合验证条件.这节课我们通过设计实验,通过探究自由落体过程中能量的变化来验证机械能守恒定律. 指导学生阅读课本内容,找出利用自由落体运动验证机械能守恒定律的方法,培养学生的阅读、总结表达能力.方法总结:在只有重力做功的自由落体运动中,物体的重力势能和动能相互转化,总的机械能守恒,验证机械能守恒定律只需验证减少的重力势能等于增加的动能即可.问题探究:让学生分组讨论、交流,要完成本实验,应该测量的量有哪些,如何测量,并提出解决方案.明确:测量物体自由下落过程中减少的势能.方法:测量物体的质量m 、下降的高度Δh ,利用重力势能的公式计算ΔE p =mgΔh;测量自由落体下降Δh 时的速度v,利用动能的公式计算ΔE k =mv 2/2,利用打点计时器处理纸带的方法来求解速度.方法补充:如何利用纸带求解瞬时速度?指导学生根据匀变速直线运动的运动学规律,推导瞬时速度的求解方法. 学生通过阅读教材,总结推导过程,教师通过大屏幕投影学生的推导过程: 如图所示,由于纸带做匀加速运动,故有A 、C 之间的平均速度:2CA AC v v v +=.根据速度公式有:v B =v A +aΔt ,v C =v B +aΔt , 故有:v B -v A =v C -v B , 即v B =2CA v v +. 从而:vB =AC v .总结:匀变速直线运动中,某点的瞬时速度等于以该点为时间中点的两点间的平均速度. 解决方案:利用电火花计时器打出纸带,通过处理纸带,既可以求出物体下降的高度,还可以求出某一瞬时的速度,因此电火花计时器是重要的实验仪器.原理探究:通过实验,求自由落体的重力势能减少量和相应过程动能的增加量.若二者相等,说明机械能守恒,从而验证机械能守恒定律.而且,因为不需要知道物体在某点动能和势能的具体数值,所以不必测量物体的质量m ,而只需验证221n v =gh n 就行了,如果要具体计算出重力势能或动能的数值就需要天平.总结:指导学生根据实验原理,写出本实验用到的实验器材: ①电火花计时器(或电磁打点计时器);②重物(质量300 g±3 g )及纸带;③铁架台、夹子、烧瓶夹;④电源.问题预测:在本实验操作的具体过程中会遇到哪些问题?通过该问题的设置,学生对实验中可能遇到的问题进行预测,并提出相应的解决方法.1.重物下落的过程中除受重力外,还受到哪些阻力?怎样减小这些阻力对实验的影响?2.重物下落时最好选择哪两个位置作为过程的开始和终结的位置?3.本实验中用的重锤,质量大一些好还是小一些好?为什么?4.质量是否为本实验必须测量的量? 参考答案:1.重物下落的过程中,除受重力外,还要受空气阻力和打点计时器给纸带的摩擦力.安装打点计时器时注意保持竖直,重物要选择质量大一些的.2.为减小测量高度h 值的相对误差,选取的各计数点要离起始点远一些.要从起始点开始测量出h 1、h 2,再求出Δh=h 2-h 1.3.锤应该选择质量大一些,体积小一些的,可以有效地减小空气阻力的影响.4.质量并非必须测量的量,在需要计算具体的能量数值时,需要天平.步骤整理:教师指导学生根据实验原理、各种器材的注意事项,总结归纳实验步骤:(1)如图所示,将纸带固定在重物上,让纸带穿过打点计时器;打点计时器的两根导线接在6伏交流电源上.(2)用手提着纸带,让重物靠近打点计时器静止,然后接通电源,松开纸带,让重物自由落下,纸带上打下一系列点.(3)重复几次,从几条打下点的纸带中挑选第一、二点间距离接近2mm 且点迹清楚的纸带进行测量,测出一系列计数点,各点到第一个点的距离d 1、d 2,d 3,……,d n-1,d n ,d n+1,……据公式v n =Td d n n 211-+-,计算物体在打下点1、2……时的即时速度v 1、v 2……计算相应的动能的增加值,填入事先设计好的表格.教师点拨:选第1、2点间距约2 mm 的纸带意味着纸带是在打第一个点的瞬时开始运动的,根据h=gT 2/2=9.8×0.022/2 m=1.961 0-3 m≈2 mm.在起始点标上0,用刻度尺测量纸带从点0到点1、2……之间的距离h 1、h 2……计算出相应减少的重力势能,填入事先设计好的表格. 处理数据,得出结论. 参考数据: 各计数点 4 5 6 7 8 9 10 t(s) 0.08 0.10 0.12 0.14 0.16 0.18 0.20 h×(10-2 m) 2.92 4.62 6.70 9.18 12.03 15.28 18.92 v=Δh/Δt(m/s) 0.945 1.14 1.33 1.53 1.72 ΔE k =mv 2/2 0.134 0.195 0.265 0.351 0.444 ΔE p =mgh0.1360.1970.2700.3540.450实验结论:在误差允许的范围内,物体减少的重力势能等于增加的动能,机械能守恒. 学生分组实验,并处理数据,教师利用实物投影仪展示几组数据,并进行点评. 师生根据实际实验中的体会,总结实验注意事项:1.打点计时器安装时,必须使两限位孔在同一竖直线上,以减小摩擦阻力.2.实验时,需保持提纸带的手不动,待接通电源,让打点计时器工作正常后再松开纸带让重锤下落,以保证第一个点是一个清晰的点.3.选用纸带时应尽量挑选第一、二点间接运2 mm 的纸带.4.打点计时器必须接50 Hz 交流低压电源.5.测量下落高度时,必须从起始点算起,不能搞错,为了减小测量h 值的相对误差,选取的各个计数点要离起始点远一些,纸带也不易过长,有效长度可在60 cm —80 cm 之内.6.实验中,只要验证gh 是否等于21v 2即可,也可不用测重锤的质量. 误差分析:教师指导学生观察表格中的数据,减少的重力势能并不是严格地等于增加的动能,而是稍大于增加的动能,让学生思考其中的原因,并总结归纳.原因:重物和纸带下落过程中要克服阻力,包括空气阻力、纸带与限孔位及纸带与计时器之间的摩擦力.由于摩擦力的存在,减少的重力势能并没有全部转化为动能,有一部分转化为内能.计时器平面不在竖直方向,纸带平面与计时器平面不平行是阻力增大的原因.电磁打点计时器的阻力大于电火花计时器.交流电的频率f 不是50 Hz 也带来误差.f <50 Hz,使动能E k <E p 的误差进一步加大,f >50 Hz 则可能出现E k >E p 的结果.因此为了实验的精确性,应该严格按照实验步骤进行.例题在用自由落体法验证机械能守恒定律的实验中,得到如图所示的一条纸带.起始点O 到A 、B 、C 、D 、E 各点的距离分别h A 、h B 、h C 、h D 、h E .如果重物的质量为m ,打点计时器所用电源的频率为f ,则在打B 、D 两点时,重物的速度v B =__________,v D =__________.如果选择起始点的位置为零势能参考点,则在打B 、D 两点时重物的机械能E B =__________,E D =__________,若E B __________E D ,则说明重物在下落过程中机械能守恒. 解析:根据纸带上瞬时速度的计算方法,得v B =22AC A C h h T h h -=-·f, vD =22CE C E h h T h h -=-·f , 打B 点时,重物的动能和重力势能分别为:E kB =2222)(81)2(2121A C A C B h h mf f h h m mv -=•-=, E pB =-mgh B .此时重物的机械能E B =E kB +E pB =81mf 2(h C -h A )2-mgh B .同理E kD =81212 D mv mf 2(h E -h C )2,E pD =-mgh D ,E D =81mf 2(h E -h C )2-mgh D . 如果E B =E D ,则说明重物在下落过程中机械能守恒.方法总结:实际上,重物拖着纸带在下落过程中,受到阻力作用,机械能在不断减小,故有E B >E D .又因为在初始点时重物的机械能为0,所以有0>E B >E D ,21mv B 2-mgh B <0,221D mv-mgh D <0,说明重物在实际下落过程中,重力势能的减少量大于动能的增加量.检测反馈(1)为进行“验证机械能守恒定律”的实验,有下列器材可供选用:铁架台、打点计时器、复写纸、纸带、秒表、低压直流电源、导线、电键、天平.其中不必要的器材有: ________________;缺少的器材是________________________________.(2)在验证机械能守恒定律时,如果以v 2/2为纵轴,以h 为横轴,根据实验数据绘出的图线应是________________,才能验证机械能守恒定律,其斜率等于_______________的数值. (3)在做“验证机械能守恒定律”的实验时,用打点计时器打出纸带如图所示,其中A 点为打下的第一个点,0、1、2……为连续的计数点.现测得两相邻计数点之间的距离分别为s 1、s 2、s 3、s 4、s 5、s 6,已知相邻计数点间的打点时间间隔均为T.根据纸带测量出的距离及打点的时间间隔,可以求出此实验过程中重锤下落运动的加速度大小表达式为____________.在打第5号计数点时,纸带运动的瞬时速度大小的表达式为____________.要验证机械能守恒定律,为减小实验误差,应选择打下第_________号和第_________号计数点之间的过程为研究对象.(4)某次“验证机械能守恒定律”的实验中,用6 V 、50 Hz 的打点计时器打出的一条无漏点的纸带,如图所示,O 点为重锤下落的起点,选取的计数点为A 、B 、C 、D ,各计数点到O 点的长度已在图上标出,单位为毫米,重力加速度取9.8 m/s 2.若重锤质量为1 kg.①打点计时器打出B 点时,重锤下落的速度v B =__________m/s ,重锤的动能E kB =_________J. ②从开始下落算起,打点计时器打B 点时,重锤的重力势能减少量为____________J.③根据纸带提供的数据,在误差允许的范围内,重锤从静止开始到打出B 点的过程中,得到的结论是____________________________________. 参考答案:(1)不必要的器材有:秒表、低压直流电源、天平.缺少的器材是低压交流电源、重锤、刻度尺(2)通过原点的直线 g (3)(s 6+ s 5+ s 4- s 3- s 2-s 1)/9T 2 (s 5+s 6)/2T 1 5 (4)①1.175 0.69 ②0.69 ③机械能守恒 思维拓展处理纸带的时候速度能不能用v=gh 2或v=gt 计算?参考解答:v=gh 2是根据机械能守恒定律得到的,而我们的目的就是验证机械能守恒定律,所以不能用.v=gt 认为加速度为g ,由于各种摩擦阻力不可避免,所以实际加速度必将小于g ,故这种方法也不能用.课堂小结本节课主要学习了:1.实验目的:用自由落体运动验证机械能守恒.2.纸带的选取及重物速度的测量方法.3.实验的误差来源及注意事项.布置作业1.教材“问题与练习”第1、2题.2.自己设计方案,验证机械能守恒,自由选择实验仪器,写出操作步骤及实验报告.教学反思验证机械能守恒定律是在学习了机械能守恒定律之后进行的一节实验课,目的在于学习物理规律之后进行,验证物理规律的正确性,巩固和加深对物理规律的理解.本节仍然采用了不给步骤给思路,同时进行难点提示的写法,这给教师在实际教学中很大的教学空间.本实验虽然是个验证性实验,但本教学设计突破思维习惯,采用由学生自主提出、验证方法、验证原理、验证步骤及方案的方法,渗透探究型实验的思想.因此,本教学设计注重了在过程中培养学生的科学素养.通过积极的创造性活动,使学生参与并体验了设计方案形成的思维过程,从中体会实验设计的乐趣和艰辛,感悟了科学实验的本质和价值,从而使学生形成科学的情感态度与价值观.本教学设计主要讲解机械能守恒定律的推导,没有大量讲解例题,重点放在机械能守恒定律的含义要讲透,这对下一节的应用课有很大帮助.渗透了能量在物理学习中的重要地位,这是物理力学知识的核心所在.。
第9节 实验,:验证机械能守恒定律[知识概要]一、实验目的1.会用打点计时器打下的纸带计算物体的运动速度和位移.2.探究自由落体运动物体的机械能守恒.二、实验原理让物体自由下落,在忽略阻力情况下,探究物体的机械能守恒,有两种方案探究物体的机械能守恒:1.以物体下落的起始点O 为基准,测出物体下落高度h 时的速度大小v ,若12mv 2=mgh 成立,则可验证物体的机械能守恒.2.测出物体下落高度h 过程的初、末时刻的速度v 1、v 2,若关系式12mv 22-12mv 21=mgh 成立,则物体的机械能守恒.一、实验目的验证机械能守恒定律.二、实验原理在自由落体运动中,若物体下落高度h 时的速度为v ,则有mgh =12mv 2.故只需借助打点计时器,通过纸带测出重物某时刻的下落高度h 和该时刻的瞬时速度v ,即可验证机械能守恒定律.三、实验器材铁架台(带铁夹)、打点计时器、重物(带纸带夹)、纸带(数条)、复写纸、导线、毫米刻度尺、学生电源.四、实验步骤1.按图所示把打点计时器固定在铁架台上,用导线把打点计时器与电源连接好.2.把纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手竖直提起纸带使重物停靠在打点计时器附近.3.先接通电源,后松开手,让重物带着纸带自由下落.4.重复几次,得到3~5条打好点的纸带.5.选取点迹较为清晰,且第1、2两计时点间距接近 2__mm 的一条纸带,纸带上第1个点记为O ,然后在距离点O 较远的地方选取相等时间间隔的点,依次标上1、2、3…用刻度尺测出对应的下落高度h 1、h 2、h 3…6.计算出各点对应的瞬时速度v 1、v 2、v 3…7.计算出各点对应的势能减少量mgh n ,并和动能增加量12mv 2n 进行比较.要点1|注意事项和误差分析1.注意事项(1)实验中安装打点计时器时,限位孔必须在同一竖直线上,以减少摩擦阻力.打点计时器离地面高度约1 m ,实验用的纸带60 cm 左右即可.(2)实验时,必须先接通电源,让打点计时器工作正常以后才能松开纸带,让重物下落.(3)纸带上端要用手提着使其静止,这样可保证下落的初速度为零,并且纸带上打出的第一个点是清晰的一个小点.(4)测量下落高度时,都必须从起点算起,为了减小测量h值的误差,选取的各个计数点要离起始点远些.(5)实验中重物和纸带下落过程中要克服阻力(主要是打点计时器限位孔的阻力)做功,所以动能的增加量ΔE k一定小于重力势能的减少量ΔE p.(6)铁架台上固定打点计时器的夹子不可伸出太长,以防铁架台翻倒.2.误差分析(1)偶然误差:测量相关长度时带来的误差,减小的方法是多测几次取平均值.(2)系统误差:实验过程中要克服阻力(包括空气阻力和打点计时器阻力)做功,故动能的增加量ΔE k必定稍小于重力势能的减少量ΔE p.(3)电源频率不稳定也会带来误差.(1)如图所示为用打点计时器验证机械能守恒定律的实验装置.关于这一实验,下列说法中正确的是________.A.需使用天平测出重物的质量B.应先释放纸带,后接通电源打点C.需使用秒表测出重物下落的时间D.测出纸带上两点迹间的距离,可知重物相应的下落高度(2)实验时,应使打点计时器的两个限位孔在同一竖直线上.这样做可以________(选填“消除”“减小”或“增大”)纸带与限位孔之间的摩擦.(3)在实际测量中,重物减少的重力势能通常会________(选填“略大于”“等于”或“略小于”)增加的动能.【思路点拨】 正确解答本题需要掌握:理解该实验的实验原理;实际实验中,重锤要受到空气阻力,纸带和打点计时器限位孔之间有摩擦力,故重物下落时要克服这些阻力做功,重力势能不能全部转化为动能.【解析】 (1)根据mgh =12mv 2,可知不需要测量重物的质量m ,故A 错误;开始记录时,应先给打点计时器通电打点,然后再释放重锤,让它带着纸带一同落下,如果先放开纸带让重物下落,再接通打点计时器的电源,由于重物运动较快,不利于数据的采集和处理,会对实验产生较大的误差,故B 错误;我们可以通过打点计时器计算时间,不需要秒表,故C 错误;测出纸带上两点迹间的距离,可知重物相应的下落高度,故D 正确.故选D .(2)打点计时器的两个限位孔如果不在在同一竖直线上.纸带运动中就会与限位孔之间有摩擦,重物下落时要克服这个阻力做功,重力势能不能全部转化为动能,实验存在误差.纸带与限位孔之间的摩擦是无法避免的,这样做只能减小纸带与限位孔之间的摩擦.(3)实际实验中,重锤要受到空气阻力,纸带和打点计时器限位孔之间有摩擦力,故重物下落时要克服这些阻力做功,重力势能不能全部转化为动能,有一小部分转化为内能,故重物减少的重力势能通常会略大于增加的动能.【答案】 (1)D (2)减小 (3)略大于用如图1所示的实验装置验证机械能守恒定律,实验所用的电源为学生电源,输出电压为6 V 的交流电和直流电两种.重锤从高处由静止开始下落,重锤上拖着的纸带打出一系列的点,对纸带上的点痕进行测量,验证机械能守恒定律.(1)(多选)下面列举了该实验的几个操作步骤:A .按照图示的装置安装器件;B .将打点计时器接到电源的“直流输出”上;C .用天平测出重锤的质量;D .释放悬挂纸带的夹子,同时接通电源开关,打出一条纸带;E .测量纸带上某些点间的距离;F .根据测量的结果计算重锤下落过程中减少的重力势能是否等于增加的动能.其中没有必要进行或者操作不当的步骤是________________.(将其选项对应的字母填在横线处)(2)已知打点计时器所用电源的频率为50 Hz.查得当地的重力加速度g =9.80 m/s 2.测得所用重锤的质量为1.00 kg.实验中得到一条点迹清晰的纸带,把第一个点记作O ,每两个计数点之间有四点未画出,另选连续的3个计数点A 、B 、C 作为测量的点,如图2所示.经测量知道A 、B 、C 各点到O 点的距离分别为50.50 cm 、86.00 cm 、130.50 cm.根据以上数据,计算出打B 点时重锤的瞬时速度v B =________m/s ;重锤由O 点运动到B 点,重力势能减少了________J ,动能增加了________J(保留3位有效数字).并可得出的结论是________________________.解析:(1)验证动能的增加量和重力势能的减小量是否相等,mgh =12mv 2,质量可以约去,不必要用天平测量重锤的质量,C 操作步骤不必要;打点计时器应接在电源的“交流输出”上,B 操作步骤不当;在实验的操作中,应先接通电源再释放纸带,D 操作步骤不当.(2)根据匀变速直线运动规律可知,B 点的瞬时速度v B =x AC 2T=4.00 m/s ,重锤由O 点运动到B 点,重力势能减少了ΔE p =mgh =8.43 J ,动能的增加量ΔE k =12mv 2B =8.00 J .在误差允许的范围内,重锤自由下落机械能守恒.答案:(1)BCD (2)4.00 8.43 8.00 在误差允许的范围内,重锤自由下落机械能守恒名师方法总结实验中,需保持提纸带的手不动,待接通电源,打点计时器工作稳定后再释放纸带让重锤下落;选取纸带时,本着点迹清晰且第1、2两点间距离接近2 mm 的原则;不需要测量重锤的质量,只需证明12v 2n =gh n 就可以了.要点2|实验数据的处理方法1.公式法:本实验不需要测出物体的质量m ,只需要验证mgh =12mv 2,即gh =12v 2即可. 2.图象法:以v 22为纵轴,h 为横轴,画出v 22h 的图象,得到一条过原点的直线,斜率表示加速度g ,这是另一种处理数据的方法. 3.变形公式法:纸带上任取两点A 、B 点,测出h AB ,计算出v 2A 2-v 2B 2的值,在误差允许的范围内,gh AB =v 2A 2-v 2B 2,则机械能是守恒的. 4.速度的计算 根据匀变速直线运动的规律,利用纸带上的数据计算瞬时速度v =h n +1-h n -12T.典例2 用图示装置验证机械能守恒定律.实验前调整光电门位置使小球下落过程中球心通过光电门中的激光束.实验中通过断开电磁铁开关使小球从A 点下落,经过光电门B ,记录挡光时间Δt ,测出小球在AB 间下落的距离h .竖直平移光电门B ,重复上述步骤,测得多组h 及相应的Δt ,已知当地重力加速度为g .(1)实验中还需测量的物理量是____________.(2)小球通过光电门速度的表达式为v =____________.(3)根据测量数据描绘1Δt 2h 图象,能否仅依据图象是过原点的直线就得出机械能守恒的结论?________,理由是________________________________.【思路点拨】 (1)该题利用自由落体运动来验证机械能守恒,因此需要测量物体自由下落的高度h AB ,以及物体通过B 点的速度大小,在测量速度时我们利用小球通过光电门的平均速度来代替瞬时速度,因此明白了实验原理即可知道需要测量的数据;(2)利用小球通过光电门的平均速度来代替瞬时速度;(3)根据机械能守恒的表达式可以求出所要求的关系式,然后分析答题.【解析】 (1)实验需要求出小球经过光电门时的速度,需要测出小球的直径d .(2)利用小球通过光电门的平均速度来代替瞬时速度,故v =d Δt. (3)根据机械能守恒的表达式有mgh =12mv 2, 即1Δt 2=2gd 2h , 不能依据图象是过原点的直线就得出机械能守恒的结论,当斜率近似等于2g d 2,才能判断小球下落过程中机械能守恒. 【答案】 (1)小球直径d (2)d Δt (3)不能 斜率近似等于2g d 2,才能判断小球下落过程中机械能守恒利用如图所示装置进行验证机械能守恒定律的实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v 和下落高度h .某班同学利用实验得到的纸带,设计了四种测量方案,正确的是 ( )A .用刻度尺测出物体下落的高度h ,并测出下落时间t ,通过v =gt 计算出瞬时速度vB .用刻度尺测出物体下落的高度h ,并通过v =2gh 计算出瞬时速度vC .根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v ,并通过h =v 22g计算出高度h D .用刻度尺测出物体下落的高度h ,根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v解析:自由落体运动只受重力,机械能守恒.如果把重物的实际运动看成自由落体运动,再运用自由落体的规律求解速度,那么就不需要验证,A 、B 、C 选项错误,D 选项正确.答案:D名师方法总结(1)利用gh =v 22来验证机械能守恒定律时,须保证打第一个点时的速度为零. (2)无论是利用gh 与v 22还是gh AB 与v 2B 2-v 2A 2来验证机械能守恒定律,速度v 均应利用该点前后相邻两点间的平均速度来求解,而不能用v =2gh 或v =gt 来求解.要点3|创新设计性实验验证机械能守恒定律的实验一般是利用自由落体运动来实现的,但可以通过变通实验装置,变通实验操作方法,达到验证实验的目的,解决此类问题的关键是了解实验目的、实验装置以及操作过程,明确实验原理,从而进一步分析需要测量的物理量,找出各量之间的关系,确定验证的表达式.典例3 有一种“傻瓜”照相机,其光圈(进光孔径)随被拍摄物体的亮度自动调节,而快门(曝光时间)是固定不变的.一位同学利用“傻瓜”照相机来做“验证机械能守恒定律”的实验.(1)首先这个同学事先测定了相机的曝光时间为t .(2)这位同学提出了下述实验方案:他从墙面前某点O ,使一个小石子自由落下,对小石子照相得到如图甲的照片,由于小石子的运动,它在照片上留下一条模糊的径迹AB .通过测量OA 的距离为h ,AB 的距离为x ,当地的重力加速度为g ,由于相机曝光时间很短,可以认为A 点的速度近似等于AB 段的平均速度.则石子划过A 点时的速度大小v =__________(用题中给出的物理量字母表示).(3)多次改变高度h ,重复上述实验,作出x 2随h 变化的图象如图乙所示,当图中已知量X 、H 和重力加速度g 及曝光时间为t 满足表达式______________时,可判断小球下落过程中机械能守恒.【思路点拨】 根据极短时间内的平均速度等于瞬时速度求出石子划过A 点时的速度大小.抓住重力势能的减小量与动能的增加量相等,得出X 、H 和重力加速度g 及曝光时间为t 满足的表达式.【解析】 (2)根据极短时间内的平均速度等于瞬时速度知,石子划过A 点的速度大小v =x t .(3)若机械能守恒,有mgH =12mv 2=12m x 2t 2,即gH =X 22t 2. 【答案】 (2)x t (3)gH =X 22t 2 如图所示装置可用来验证机械能守恒定律.摆锤A 拴在长L的轻绳一端,另一端固定在O 点,在A 上放一个小铁片,现将摆锤拉起,使绳偏离竖直方向成θ角时由静止开始释放摆锤,当其到达最低位置时,受到竖直挡板P 阻挡而停止运动,之后铁片将飞离摆锤而做平抛运动.(1)为了验证摆锤在运动中机械能守恒,必须求出摆锤在最低点的速度.为了求出这一速度,实验中还应该测量哪些物理量?________________________________________________________________________.(2)根据测得的物理量表示摆锤在最低点的速度v =________________.(3)根据已知的和测得的物理量,写出摆锤在运动中机械能守恒的关系式为________________.解析:(1)本实验利用平抛运动规律求解摆锤在最低点的速度,需要测量遇到挡板后铁片的水平位移x 和竖直下落高度h .(2)根据平抛运动规律,x =vt ,h =12gt 2,联立解得v =x g 2h. (3)重锤下落过程中机械能守恒,mgL (1-cos θ)=12mv 2,代入(2)中数据得,L (1-cos θ)=x24h.答案:(1)遇到挡板后铁片的水平位移x和竖直下落高度h(2)xg2h(3)L(1-cosθ)=x24h名师方法总结无论用什么方法验证机械能守恒定律,都要选取研究对象,找出重力势能的减少量和动能增加量的关系.【强化基础】1.(多选)下面列举的各个实例中,机械能守恒的是( )A.一小球在粘滞性较大的液体中匀速下落B.水平抛出的物体(不计空气阻力)C.拉住一个物体沿光滑斜面匀速上升D.物体在光滑斜面上自由下滑解析:一小球在粘滞性较大的液体中匀速下落,动能不变,势能减小,机械能减小,选项A错误;水平抛出的物体(不计空气阻力)只有重力做功,机械能守恒,选项B正确;拉住一个物体沿光滑斜面匀速上升,动能不变,势能增加,故机械能变大,选项C错误;物体在光滑斜面上自由下滑,只有重力做功,机械能守恒,选项D正确.故选BD.答案:BD2.某位同学做“验证机械能守恒定律”的实验,下列操作步骤中错误的是( ) A.把打点计时器固定在铁架台上,用导线连接到低压交流电源B .将连有重锤的纸带穿过限位孔,将纸带和重锤提升到一定高度C .先释放纸带,再接通电源D .更换纸带,重复实验,根据记录处理数据解析:“在验证机械能守恒定律”的实验中,应先接通打点计时器的电源,打点计时器稳定工作后再释放纸带,故选项C 说法是错误的.答案:C3.在验证机械能守恒定律的实验中,需要直接测量的物理量是( )A .重锤的质量B .重锤下落的时间C .重锤下落的高度D .重锤的瞬时速度解析:在不需要求动能和势能值时,不必测出重物质量,只要12(v 22-v 21)=g Δh 就能验证机械能守恒;重锤下落时间不需要测;重锤的瞬时速度不是直接测的物理量.答案:C4.“验证机械能守恒定律”的实验装置如图所示,实验中发现重物增加的动能略小于减少的重力势能,其主要原因是( )A .重物的质量过大B .重物的体积过小C .电源的电压偏低D.重物及纸带在下落时受到阻力解析:本实验中重物增加的动能略小于减少的重力势能的原因是重物及纸带在下落时受到阻力,D选项正确.答案:D【巩固易错】5.(多选)(2018·嘉兴模拟)如图实验器材中,能用于“探究小车速度随时间变化的规律”“探究加速度与力质量的关系”“探究做功与物体速度变化的关系”“验证机械能守恒定律”四个分组实验的是( )A BC D解析:“探究小车速度随时间的变化规律”需要的器材有:小车、打点计时器和纸带、钩码、刻度尺等;“探究加速度与力、质量的关系”需要的器材有:小车、打点计时器和纸带、天平、砝码、钩码、刻度尺等;“探究做功与物体速度变化的关系”需要的器材有:小车、打点计时器和纸带、橡皮筋、刻度尺等;“验证机械能守恒定律”需要的器材有:重锤、铁架台、打点计时器和纸带、刻度尺等,用于这四个实验都用到的器材是打点计时器和刻度尺,C、D选项正确.答案:CD6.(2018·湖南模拟)某同学用如图甲所示的装置“验证机械能守恒定律”,他进行的部分操作步骤如下:(1)将两光电门固定在铁架台上,如图甲;(2)用螺旋测微器测量圆柱形重锤的高度L 如图乙所示,则L =________mm ;(3)接通光电门电源;(4)将重锤从光电门正上方由静止释放,让重锤下落并穿过两光电门;(5)若重锤通过光电门1、光电门2时,计时器记录下的时间分别为Δt 1、Δt 2.重锤的高度用L 表示,若已知当地的重力加速度为g ,要验证重锤从光电门1到光电门2的过程中机械能守恒,还需要测量的物理量是________________(写出物理量并用相关字母表示).(6)需要验证的表达式为__________________(用相关字母表示).解析:(2)螺旋测微器的读数等于固定刻度读数加上可动刻度读数,需估读.螺旋测微器的固定刻度读数为11 mm ,可动刻度读数为0.01×20.6 mm =0.206 mm ,则最终读数为11.206 mm.(5)(6)根据极限的思想可知,极短时间内的平均速度等于瞬时速度,重锤通过两个光电门的瞬时速度v 1=L Δt 1,v 2=L Δt 2,动能的增加量ΔE k =12mv 22-12mv 21=12m ⎝ ⎛⎭⎪⎫L Δt 22-12m ⎝ ⎛⎭⎪⎫L Δt 12.重力势能的减少量ΔE p =mgh .则需要验证的表达式是:mgh =12m ⎝ ⎛⎭⎪⎫L Δt 22-12m ⎝ ⎛⎭⎪⎫L Δt 12,即为:2gh =⎝ ⎛⎭⎪⎫L Δt 22-⎝ ⎛⎭⎪⎫L Δt 12,可知还需要测量的物理量是光电门1与光电门2之间的高度差h . 答案:(2)11.206(11.204~11.207)(5)光电门1与光电门2之间的高度差h(6)2gh =⎝ ⎛⎭⎪⎫L Δt 22-⎝ ⎛⎭⎪⎫L Δt 12 【能力提升】7.在“验证机械能守恒定律”的实验中(所用电源频率为50 Hz):(1)某同学用如甲图所示的装置进行实验,得到如乙图所示的纸带,把第一个点(初速度为零)记作O 点,测出点O 、A 间的距离为89.36 cm ,点A 、C 间的距离为17.24 cm ,点C 、E 间的距离为18.76 cm ,已知当地重力加速度为9.80 m/s 2,重锤的质量为m =1.0 kg ,则打点计时器在打O 点到C 点的这段时间内,重锤动能的增加量为________ J ,重力势能的减少量为________ J .(计算结果保留三位有效数字)(2)利用该装置可以测量重锤下落的加速度a =________ m/s 2.(计算结果保留三位有效数字) 解析:(1)利用匀变速直线运动的推论v C =x AE 4T =0.172 4+0.187 60.08=4.5 m/s ,则 ΔE k =12mv 2C =12×0.5×(4.5)2=10.1 J ,重锤由O 点运动到C 点时,重锤的重力势能的减少量ΔE p =mgh =0.5×9.8×(0.893 6+0.172 4) J =10.4 J.(2)根据Δx =aT 2得重锤下落的加速度a =Δx T 2=0.187 6-0.172 40.042=9.50 m/s 2.答案:(1)10.1 10.4 (2)9.508.(2018·浙江二模)“验证机械能守恒定律”的实验.(1)实验室提供了铁架台、夹子、导线、纸带等器材.为完成此实验,除了所给的器材,在图中还必须选取的实验器材是________.(2)下列方法有助于减小实验误差的是( )A.在重锤的正下方地面铺海绵B.必须从纸带上第一个点开始计算验证机械能是否守恒C.重复多次实验,重物必须从同一位置开始下落D.重物的密度尽量大一些(3)完成实验后,小明用刻度尺测量纸带距离时如图(乙),已知打点计时器每0.02 s 打一个点,则B点对应的速度v B=________m/s.若H点对应的速度为v H,重物下落的高度为h BH,重物质量为m,当地重力加速度为g,为得出实验结论完成实验,需要比较mgh BH与________________的大小关系(用题中字母表示).解析:(1)该实验中可以选用电磁打点计时器和学生电源或者是电火花计时器.在实验中需要刻度尺测量纸带上点与点间的距离从而可知重锤下降的距离,故需要毫米刻度尺.(2)在重锤的正下方地面铺海绵,目的是保护仪器,A选项错误;该实验是比较重力势能的减少量与动能增加量的关系,不一定要从纸带上第一个点开始计算验证,B选项错误;重复多次实验时,重物不需要从同一位置开始下落,C选项错误;选重物的密度尽量大一些,可以减小摩擦阻力和空气阻力的影响,从而减少实验误差,D选项正确.(3)根据刻度尺的读数规则可知,AC之间的距离x AC=5.40 cm.根据匀变速直线运动的规律可知,一段时间内的平均速度等于中间时刻的瞬时速度,B 点瞬时速度的大小v B =x AC 2T=1.35 m/s. 根据机械能守恒可知,mgh BH =12mv 2H -12mv 2B . 答案:(1)电磁打点计时器和学生电源(或者是电火花计时器)、毫米刻度尺 (2)D(3)1.35 12mv 2H -12mv 2B。
学校:临清二中学科:物理编写人:王雪莲审稿人:马洪学必修二第七章第九节《实验:验证机械能守恒定律》一、教材分析《验证机械能守恒定律》是人教版高中物理必修二第七章《机械能》第九节的教学内容,本节通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法.是一节重要的实验课,它使上节课的内容更深入人心。
二、教学目标知识与技能1.会用打点计时器打下的纸带计算物体运动的速度.2.掌握验证机械能守恒定律的实验原理.过程与方法通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法.情感、态度与价值观通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观.培养学生的观察和实践能力,培养学生实事求是的科学态度.三、教学重点难点教学重点掌握验证机械能守恒定律的实验原理.教学难点验证机械能守恒定律的误差分析及如何减小实验误差的方法.四、学情分析我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。
需要教师指导并进行适当的演示即便实验能顺利进行。
五、教学方法探究、讲授、讨论、实验六、课前准备1.学生的学习准备:预习《实验:验证机械能守恒定律》,并填写学案。
2.教师的教学准备:实验器材,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)复习导入、展示目标。
教师首先提问:思考1:机械能守恒定律的内容是什么,需要什么条件?思考2:机械能守恒的表达式是什么,我们能否设计一个情景验证一下机械能守恒定律?设计意图:通过复习上节的知识为本节的学习打下一个基础,并明确学习目标。
(三)合作探究、精讲点拨。
初步实验设计和学生讨论下面几个问题,帮助学生设计实验。
1、实验目的: 。
2实验的研究对象是 ,他做的是 运动。
3、重物下落过程中,除了重力外会受到哪些阻力?怎样减少这些阻力对实验的影响? 重物受两种阻力:一、空气阻力 选用密度大、质量大的重物可减少空气阻力的影响。
第9节实验:验证机械能守恒定律一、实验目的1.会用打点计时器打下的纸带计算物体运动的速度。
2.掌握利用自由落体运动验证机械能守恒定律的原理和方法。
二、实验原理让物体自由下落,忽略阻力情况下物体的机械能守恒,有两种方案验证物体的机械能守恒:1.以物体下落的起始点O 为基准,测出物体下落高度h 时的速度大小v ,若12mv 2=mgh 成立,则可验证物体的机械能守恒。
2.测出物体下落高度h 过程的初、末时刻的速度v 1、v 2,若关系式12mv 22-12mv 12=mgh 成立,则物体的机械能守恒。
三、实验器材铁架台(带铁夹)、电磁打点计时器、重锤(带纸带夹子)、纸带、复写纸、导线、毫米刻度尺、低压交流电源。
四、实验步骤1.安装置:按图将检查、调整好的打点计时器竖直固定在铁架台上,接好电路。
2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手提着纸带使重物静止在靠近打点计时器的地方。
先接通电源,后松开纸带,让重物带着纸带自由下落。
更换纸带重复做3次~5次实验。
3.选纸带:选取点迹较为清晰且有两点间的距离约为2 mm 的纸带,把纸带上打出的两点间的距离为2 mm 的第一个点作为起始点,记作O ,在距离O 点较远处再依次选出计数点1、2、3…4.测距离:用刻度尺测出O 点到1、2、3…的距离,即为对应下落的高度h 1、h 2、h 3… 五、数据处理1.计算各点对应的瞬时速度:记下第1个点的位置O ,在纸带上从离O 点适当距离开始选取几个计数点1、2、3…并测量出各计数点到O 点的距离h 1、h 2、h 3…再根据公式v n =h n +1-h n -12T,计算出1、2、3、4、…n 点的瞬时速度v 1、v 2、v 3、v 4、…v n 。
2.机械能守恒验证方法一:利用起始点和第n 点。
从起始点到第n 个计数点,重力势能减少量为mgh n ,动能增加量为12mv n 2,计算gh n 和12v n 2,如果在实验误差允许的X 围内gh n =12v n 2,则机械能守恒定律得到验证。
03课后课时作业KEHOUKESHIZUOYEi.7注意事项)在“验证机械能守恒定律”实验中,纸带将被释放瞬间的四种情况如照片所示,其中最合适的是()A B C 1)答案D解析A、B纸带弯折会产生很大的摩擦阻力,B、C重锤起始位置离打点计时器太远,D中操作最合适,选D。
2.(误差分析)用图所示装置验证机械能守恒定律,由于电火花计时器两限位孔不在同一竖直线上,使纸带通过时受到较大的阻力,这样实验造成的结果是()A.重力势能的减少量明显大于动能的增加量B.重力势能的减少量明显小于动能的增加量C.重力势能的减少量等于动能的增加量D.以上几种情况都有可能答案A解析由于重物下落时要克服阻力做功,重物减少的重力势能转化为重物的动能和系统的内能,故重力势能的减少量大于动能的增加量,A正确。
3.(实验原理)在“验证机械能守恒定律”的实验中,下列物理量中需要直接测量的是()A.重物的质量B.重力加速度C.重物下落的高度D.重物下落某一高度所对应的瞬时速度答案C解析重物的质量不需要测量;重力加速度是已知的;重物下落的高度需要测量;瞬时速度是根据纸带上的数据计算得出的。
故应选C。
4.(数据处理X多选)如图所示是用自由落体法验证机械能守恒定律时得到的一条纸带,有关尺寸在图中已注明。
我们选中“点来验证机械能守恒定律,下面举出一些计算n点速度的方法,其中正确的是()hn-l鼠+1A.v n=gnTB.v n=g(n-1)Tv n-2T- h n+]~hn-]D.v n—2T答案CD解析直接利用重力加速度g来计算〃点速度,相当于用机械能守恒定律验证机械能守恒定律,A、B均错误;〃点的速度等于〃一1到〃+1两点间的平均速度,故C、D正确。
5.(实验原理)在研究重物自由下落过程中机械能守恒的实验中,得到如图所示的一条纸带,该纸带上最初打出的几个点不清楚,纸带上留下的是最后面的一些点。
算出打下B、C两点时重物的速度分别是加、Vc,测得夙。
第九节 抛物线(一)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( ) A.14 B .-14 C .4 D .-4解析:抛物线方程变为x 2=1a y ,因为准线方程为y =1,所以-14a =1,得a =-14.故选B.答案:B2.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x解析: 由题意设抛物线方程为y 2=2px (p >0).又∵其准线方程为x =-p2=-2,∴p =4,所求抛物线方程为y 2=8x .故选B.答案:B3.(2013²安徽合肥模拟)直线l 过抛物线y 2=2px (p >0)的焦点,且与抛物线交于A 、B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=12xB .y 2=8xC .y 2=6xD .y 2=4x解析:设A (x 1,y 1),B (x 2,y 2),由抛物线定义可得x 1+x 2+p =8,又AB 中点到y 轴的距离为2,所以x 1+x 2=4.所以p =4,故选B.答案:B4.如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x解析:分别过A ,B 作准线的垂线,垂足分别为E ,D ,如题图. 因为|BC |=2|BF |,由抛物线的定义可知|BF |=|BD |,∠BCD =30°. 又|AE |=|AF |=3,所以|AC |=6,即F 为AC 的中点,所以p =12|EA |=32,故抛物线的方程为y 2=3x ,故选C. 答案:C5.直线l 过抛物线y 2=8x 的焦点, 且与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,则( ) A .y 1²y 2=-64 B .y 1²y 2=-8 C .x 1²x 2=4 D .x 1²x 2=16解析:抛物线的焦点为F (2,0),设直线l 的方程为my =x -2,由⎩⎪⎨⎪⎧my =x -2,y 2=8x ,得y2-8my -16=0,又A (x 1,y 1),B (x 2,y 2),故y 1²y 2=-16,x 1²x 2=y 21y 2264=16264=4.故选C.答案:C6. (2013²浙江宁波)对于抛物线y 2=4x 上任意一点Q ,点P (a,0)满足|PQ |≥|a |,则a 的取值范围是( )A .(-∞,0)B .(-∞,2]C .[0,2]D .(0,2)解析:设点Q 的坐标为⎝ ⎛⎭⎪⎫y 204,y 0,由|PQ |≥|a |,得y 20+⎝ ⎛⎭⎪⎫y 204-a 2≥a 2,整理得y 20(y 20+16-8a )≥0,因为y 20≥0,所以y 20+16-8a ≥0,即a ≤2+y 208恒成立.而2+y 208的最小值为2,所以a ≤2.故选B.答案:B7. (2013²佛山一模)已知抛物线x 2=4y 上一点P 到焦点F 的距离是5,则点P 的横坐标是________.解析:根据抛物线的定义可知P 到焦点的距离为5,则其到准线距离也为5. 又因为抛物线的准线为y =-1,所以P 点的纵坐标为5-1=4.将y =4代入抛物线方程得:4³4=x 2,解得x =±4. 答案:±48.(2013²成都模拟)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.解析:抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,则线段FA 的中点B 的坐标为⎝ ⎛⎭⎪⎫p4,1,代入抛物线方程得1=2p ³p 4,解得p =2,故点B 的坐标为⎝ ⎛⎭⎪⎫24,1,故点B 到该抛物线准线的距离为24+22=324.答案:3249.(2013²山东威海模拟)直线l 过抛物线y 2=2px (p >0)的焦点,且交抛物线于A 、B两点,交其准线于C 点,已知|AF |=4,CB →=3BF →,则p =________.解析:过A 、B 分别作准线的垂线交准线于E 、D ,G 为x 轴与准线交点,因为|AF |=4,CB →=3BF →,所以|AE |=4,|CB |=3|BF |,且|BF |=|BD |,设|BF |=|BD |=a ,则|BC |=3a ,由三角形的相似性得|BD ||AE |=|CB ||AC |,即a 4=3a 4a +4,解得a =2,所以|GF ||AE |=|CF ||AC |,即p 4=4a4a +4,所以p =83.答案:8310.已知如图,抛物线y 2=2px (p >0)的焦点为F ,A 在抛物线上,其横坐标为4,且位于x 轴上方,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线方程;(2)过M 作MN ⊥FA ,垂足为N ,求点N 的坐标.解析:(1)抛物线y 2=2px (p >0)的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线的标准方程为y 2=4x . (2)由(1)得点A 的坐标是(4,4), 由题意得B (0,4),M (0,2),因为F (1,0),所以k FA =43.因为MN ⊥FA ,所以k MN =-34.则FA 所在直线的方程为y =43(x -1),MN 所在直线的方程为y -2=-34x .解方程组⎩⎪⎨⎪⎧ y =43(x -1),y -2=-34x ,得⎩⎪⎨⎪⎧x =85,y =45.所以N ⎝ ⎛⎭⎪⎫85,45.11.已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程.(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA →²FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.解析:(1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:(x -1)2+y 2-x =1(x >0).化简得y 2=4x (x >0).(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设直线l 的方程为x =ty +m ,由⎩⎪⎨⎪⎧x =ty +m ,y 2=4x ,得y 2-4ty -4m =0,Δ=16(t 2+m )>0.于是⎩⎪⎨⎪⎧y 1+y 2=4t ,y 1y 2=-4m .①又F A →=(x 1-1,y 1),F B →=(x 2-1,y 2),F A →²F B →<0⇔(x 1-1)²(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+y 1y 2<0.②又x =y 24,于是不等式②等价于y 214²y 214+y 1y 2-⎝ ⎛⎭⎪⎫y 214+y 224+1<0⇔y 1y 2216+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0.③由①式,不等式③等价于m 2-6m +1<4t 2.④对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0,即3-22<m <3+2 2.由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有F A →²F B →<0,且m 的取值范围是(3-22,3+22).12.如图,点P 是抛物线C :y =12x 2上横坐标大于零的一点,直线l 过点P 并与抛物线C在点P 处的切线垂直,直线l 与抛物线C 相交于另一点Q .(1)当点P 的横坐标为2时,求直线l 的方程;(2)若OP →²OQ →=0,求过点P ,Q ,O 的圆的方程.解析:(1)把x =2代入y =12x 2,得y =2,∴点P 坐标为(2,2).由y =12x 2,①求导得y ′=x ,∴过点P 的切线的斜率k 切=2,∴直线l 的斜率k 1=-1k 切=-12,∴直线l 的方程为y -2=-12(x -2),即x +2y -6=0.(2)设P (x 0,y 0),则y 0=12x 20.∵过点P 的切线斜率k 切=x 0,x 0≠0.∴直线l 的斜率k 1=-1k 切=-1x 0,∴直线l 的方程为y -12x 20=-1x 0(x -x 0).②设Q (x 1,y 1),且M (x ,y )为PQ 的中点, ∵OP →²OQ →=0,∴过点P ,Q ,O 的圆的圆心为M (x ,y ),半径为r =|PM |,且x 0x 1+y 0y 1=x 0x 1+14x 20x 21=0,∴x 0x 1=0(舍去)或x 0x 1=-4.联立①②消去y ,得x 2+2x 0x -x 20-2=0,由题意知x 0,x 1为方程的两根,∴x 0x 1=-x 20-2=-4.又x 0>0,∴x 0=2,y 0=1, ∴x 1=-22,y 1=4.∵M 是PQ 的中点,∴⎩⎪⎨⎪⎧x =-22,y =52.r 2=(x -x 0)2+(y -y 0)2=274,∴过点P ,Q ,O 的圆的方程为⎝ ⎛⎭⎪⎫x +222+⎝ ⎛⎭⎪⎫y -522=274.。
第七章不可压缩流体动力学基础在前面得章节中,我们学习了理想流体与粘性流体得流动分析,按照水力学得观点,求得平均量。
但就是,很多问题需要求得更加详细得信息,如流速、压强等流动参数在二个或三个坐标轴方向上得分布情况。
本章得内容介绍流体运动得基本规律、基本方程、定解条件与解决流体问题得基本方法。
第一节流体微团得运动分析运动方式:①移动或单纯得位移(平移)②旋转③线性变形④角变形。
位移与旋转可以完全比拟于刚体运动,至于线性变形与脚变形有时统称为变形运动则就是基于液体得易流动性而特有得运动形式,在刚体就是没有得。
在直角坐标系中取微小立方体进行研究。
、平移:如果图(a)所示得基体各角点得质点速度向量完全相同时,则构成了液体基体得单纯位移,其移动速度为。
基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都与原来一样(立方基体各边得长度保持不变)。
二、线变形:从图(b)中可以瞧出,由于沿y轴得速度分量,B点与C点都比A点与D 点大了,而就代表时液体基体运动时,在单位时间内沿y 轴方向得伸长率。
、角变形(角变形速度)角变形:四、旋转(旋转角速度)那么,代入欧拉加速度表达式,得:各项含义:(1)平移速度(2)线变形运动所引起得速度增量(3)(4)角变形运动所引起得速度增量(5)(6)微团得旋转运动所产生得速度增量流体微团得运动可分解为平移运动,旋转运动,线变形运动与角变形运动之与。
——亥姆霍兹速度分解定理第二节有旋运动1、无涡流(势流)如在液体运动中,各涡流分量均等于零,即,则称这种运动为无涡流。
当满足无涡流条件时,,满足柯西条件,就有:存在。
即流速势。
满足此条件得流动(无涡流)就叫势流。
(下一章作详细介绍)2、有涡流 :如在液体运动中 ,涡流分量、及中间得任一个或全部不等于零 ,则这样 得液体运动就叫做旋流或有涡流。
自然界中得实际液体几乎都就是这种有涡得流 动。
涡线 :流场中一些假想得线 ,在所讨论得瞬时 ,涡线上各个质点得涡旋向量都 与此线在该点处相切。