无交叉线岔的工作原理精编版
- 格式:docx
- 大小:215.61 KB
- 文档页数:3
非标准无交叉线岔工作原理及检调方法程磊(中国铁路武汉局集团有限公司安全监察室,湖北武汉430000)摘要:高速站场内存在部分非标准无交叉线岔,结合受电弓通过无交叉线岔工作原理和运行特性,指出常规检调方法存在的问题,根据非标准无交叉线岔的工作特性和标准无交叉线岔的检调原理,提出非标准无交叉线岔检调步骤及方法,便于对高速铁路站场无交叉线岔的监测维护。
关键词:非标准无交叉线岔;运行特性;检调方法中图分类号:U225文献标识码:A文章编号:1672-061X(2020)02-0107-06DOI:10.19550/j.issn.1672-061x.2020.02.107在各高速站场内现场测量复核发现,前期建设施工时一些无交叉线岔道岔定位柱未按照设计标准定位安装,造成一些竣工站场存在部分道岔柱定位不标准的无交叉线岔,非标准无交叉线岔在日常检修中缺少规范标准及技术支持。
对非标准无交叉线岔日常检修提出调整方法,作为高速铁路站场无交叉线岔监测维护的技术支持。
1无交叉线岔概述(1)1/18道岔。
目前高速站场内正、侧线股道的道岔一般采用1/18道岔(见图1)。
道岔全长L=69.000m,前端长度A=31.729m,后端长度B=37.271m,导曲线半径R=1099.282m[1]。
(2)动车组受电弓。
高速铁路动车组受电弓标准宽度为1950mm[2],弓头工作宽度为1450mm(见图2),受电弓动态包络线直线区段动态量为250mm,最大限位抬升量150mm[3];由参数计算得出:受电弓半弓动态限界值=(1950÷2)+250=1225mm。
(3)标准无交叉线岔。
为满足铁路正线高速行车,在1/18道岔上方需沿正、侧线股道架设两支无交叉接触悬挂[4-5]。
以武广高铁为例,车站两端1/18道岔处接触网正、侧线接触悬挂采用无交叉式布置,共设有道岔定位柱A(简称A柱)、道岔定位柱B(简称B柱)、道图1常见1/18道岔平面示意图作者简介:程磊(1988—),男,助理工程师。
1 基本题目1.1 题目高速电气化铁路接触网无交叉线岔设计。
1.2 题目内容根据高速电气化铁路道岔的要求,进行高速接触网无交叉线岔设计,并说明其工作原理,计算始触区位置。
2 高速线岔的基本要求(1) 保证行车安全、无硬点、接触网弹性满足受电弓高速通过;(2) 无论是正线行车或侧线行车,工作支接触线均应在受电弓的工作范围之内;(3) 高速列车受电弓的横向摆动量、侧向偏转和垂直抬升量比普速有所加大所以应保证无论受电弓从正线高速进渡线或从渡线高速进正线两支接触线在动态条件下均保证受电弓平稳过渡;(4) 道岔处接触网的布置应满足列车最高通过速度的要求;(5) 线岔结构简单,便于检调,维护工作量小。
3 方案设计3.1 无交叉线岔的平面布置标准定位时接触网支柱位于两线间距600mm处,正线支拉出值为400mm,站线支拉出值为350mm,站线接触线距正线线路中心为950mm,两接触线水平距为550mm。
交叉线岔与无交叉线岔平面布置上的一个明显区别便是两支接触悬挂是否相交。
由于交叉线岔两支接触悬挂相互交叉,平面布置相对复杂,施工难度大,事故状态下不易恢复,但无明显效果。
无交叉线的布置规则:(1) 侧线接触悬挂应尽量远离正线线路中心,使其处于从正线高速通过的受电弓的动态包络线之外,保证受电弓以最大允许抬升量和最大允许摆动量高速通过正线接触线时碰触不到侧线接触线。
(2) 正线接触悬挂应尽量靠近侧线线路中心,使受电弓能顺利地在正线接触线与侧线接触线间相互转换。
(3) 道岔区域上空的正线接触悬挂的技术参数和结构形式尽量与道岔区域外的悬挂一致,以保证受电弓在正线上的受流环境不产生变化。
(4) 为便于受电弓在正线接触线与侧线接触线间相互转换,侧线接触悬挂应按一定坡度布置,使侧线悬挂在道岔前端高于正线接触线,道岔后端低于正线接触线,保证受电弓无论从正线进侧线或从侧线进正线都是由低向高运行。
(5) 为降低外界因素对无交叉线岔的影响,正线接触悬挂和侧线接触悬挂的悬挂类型、线索和零部件型号、技术参数应尽量一致。
地铁接触网无交叉线岔工程实践与研究发布时间:2022-06-07T02:56:32.813Z 来源:《中国科技信息》2022年4期作者:张龙飞[导读] 无交叉线岔是地铁接触网较为复杂、技术要求较高的单元,张龙飞济南轨道交通集团第一运营有限公司山东济南 250000摘要:无交叉线岔是地铁接触网较为复杂、技术要求较高的单元,其设计的基本理念是通过接触网的拉出值、高度布置,正线通过线岔的受电弓只接触正线接触线,不与侧线接触线接触,从而使高速通过的轨道车辆组受电弓在线岔处获得与区间正线一致的弓网关系,满足高速运行要求。
同时,地铁无交叉线岔还应满足轨道车辆组受电弓以较低速度从正线到侧线以及从侧线到正线安全通过的要求。
关键词:地铁接触网;无交叉线岔工程21世纪初我国开始大规模地铁建设,为消除交叉线岔自身结构缺陷,满足正线通过的受电弓高质量、安全可靠通过,无交叉线岔在我国高铁正线开始广泛采用。
在开始大规模地铁建设伊始,国内没有相关通用设计图,且由于国内各设计单位设计理念的差异,国内高铁无交叉线岔定位存在大拉出值布置和小拉出值布置两种方式。
十余年高铁运行实践证明,这两种方式均满足高铁安全运行要求,但在安全可靠性方面存在差异。
本文收集和分析了国内外地铁无交叉线岔理论研究和工程实践成果,为我国高铁无交叉线岔设计的优化完善提供参考。
1 国外无交叉线岔应用情况法国采用的无交叉线岔接触网布置见图1。
图中,WM为理论岔心,P为支柱B可以偏离理论岔心的距离,定位支柱一般位于道岔区两股道线间距500~600 mm处,其具体位置与道岔号大小有关,18号道岔P为4 m左右。
图1 法国无交叉线岔设计接触网布置在邻近岔心的支柱处,如果直股设计速度小于或等于100 km/h,则侧股与直股的导线高度相同,更高速时则需增加侧股导线的高度。
该形式是世界上最早的接触网两支式无交叉线岔形式。
当侧股允许速度超过一定值时,法国采用了带辅助悬挂的无交叉线岔。
高速铁路无交叉线岔检调原理及方法发表时间:2019-01-08T10:20:45.280Z 来源:《建筑学研究前沿》2018年第30期作者:杨殊伦[导读] 本文参照标准18号无交叉线岔检调标准,通过对无交分线岔运行特性进行分析,对非标准无交叉线岔日常检修提出检调方法。
上海铁路局上海高铁维修段宁杭车间摘要:接触网的线岔是关系行车安全的关键设备之一,接触网在道岔区的平面布置,即要做到结构简单、便于检修调整、维护工作量少,又能满足接触网系统硬点、弹性等指标,保证受电弓从正线高速通过,从正线进入侧线、从侧线进入正线等过程中的行车安全和供电质量。
道岔处接触网的平面布置取决于道岔类型、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。
经对宁杭高铁现场测量复核发现,因线路建设阶段施工原因,宁杭高铁站场存在大量道岔柱定位不标准的无交叉线岔,且非标准无交叉线岔检调在日常检修中缺少规范标准及技术支持,不利于日常检修及设备安全。
本文参照标准18号无交叉线岔检调标准,通过对无交分线岔运行特性进行分析,对非标准无交叉线岔日常检修提出检调方法。
关键词:宁杭高铁;无交叉线岔1 绪论1.1前言在电气化铁道上运行的列车通过道岔时,要进入两组或三组接触悬挂并存的接触网区。
道岔区接触网布置的研究集中在合理布置几组接触悬挂的空间位置,既要做到结构简单、便于检修调整、维护工作量少,又要能够满足接触网系统硬点、弹性等指标,保证受电弓从正线高速通过、从侧线进入正线等过程中的行车安全和供电质量。
1.2道岔区接触网布置类型道岔处接触网的平面布置取决于道岔类型、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。
随着高速铁路建设的蓬勃发展,列车运营速度不断提高,通过对世界各国道岔区接触网布置的研究和借鉴,不断摸索道岔区接触网布置方式,逐渐形成我国的技术体系。
道岔处接触网布置方式主要分为交叉和无交叉方式,无交叉方式分为两支无交叉和带辅助锚段的三支无交叉布置方式。
武广客运专线接触网无交叉线岔的安装与调整一、武广线无交叉线岔的结构与形式武广客运专线与正线相交的道岔均采18#道岔,道岔全长L=69.00米,前端长度A=31.729米,后端长度B=37.271米。
道岔侧股平面线选用圆曲线与直线相切的连接方式。
接触悬挂采用无交叉线岔,共设两个道岔定位柱,一个转换柱,其原理类似于三跨锚段关节。
道岔柱定位柱A设在道岔开口方向距理论岔心25米左右,即两线间距1400mm处;道岔定位柱B设在道岔开口反方向距离理论岔心15米,即两线间距150mm处。
侧线接触线过道岔柱A、道岔柱B后,由转化柱C抬高下锚。
道岔定位柱A、B和转换柱C均采用双腕臂悬挂形式,即正线与侧线接触网单独悬挂,在温度变化时可纵向自由移动,互不干扰。
在两导线间距550~600mm处采用交叉吊弦悬挂,以保证正线通过或侧线驶入正线时在该点两支接触线等高。
1、平面布置如图1所示2、工作支、非工作支接触线高度走向,如图2所示二、无交叉线岔工作原理道岔处接触网的平面布置取决于道岔种类信息、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。
武广设计采用UIC 608 Annex 4a 标准宽度为1950mm的受电弓,弓头工作宽度为1450mm;受电弓动态包络线左右晃动量:直线为250mm,曲线为350mm;动态最大抬升量按150mm考虑。
无交叉线岔平面布置时,应使侧线接触线和正线线路中心的距离大于两接触间的距离。
1、电力机车正线高速通过受电弓最外端尺寸的半宽为725mm,摆动量为250mm,升高后的加宽为150mm。
所以受电弓在侧线侧最外端可触及到的尺寸限界为:725+250+150=1125mm。
线岔平面布置如图1所示,其中B柱正线拉出值为-400、侧线拉出值为-1100,支柱位于两线路中心间距150mm 位置,所以受电弓在侧线侧最外端可触及限界1125mm<1100+150=1250mm 。
A柱侧线拉出值150mm、正线拉出值150,支柱位置处两线间距1400mm。
津秦客专18#无交叉线岔技术标准
高速区段正线道岔一般为18号道岔,接触网均采用无交分道岔布置。
侧线间道岔接触网采用普通交叉形式布置。
一、无交分道岔调整:
1、先复核腕臂偏移,腕臂顺线路偏移应符合设计要求,施工允许偏差为±20mm。
2、支撑、弹吊、吊弦和悬挂等非接触间隙不应小于80mm。
3、拉出值、导高应符合设计要求,拉出值施工允许偏差为±20mm,导高施工允许偏差为10mm。
4、受电弓中心距相邻一支接触线的距离600~1050mm范围和抬升量200毫米立体范围内为始触区,始触区内不安装任何线夹或设备零件。
5、交叉吊弦与一般吊弦间距按正常取值,始触区前安装交叉吊弦,位置在线间距550-600mm(测量方法与始触区相同)范围内,两交叉吊弦间距为2米,受电弓从道岔开口方向驶向岔心时应先接触到侧线承力索和正线接触线之间的交叉吊弦,交叉吊弦采用带载流环的滑动吊弦,载流环位于倾斜吊弦的上方,接触线吊弦线夹螺栓穿向斜上方。
安装如下图
交叉吊弦安装位置
6、当受电弓正线通过时一般只与正线接触线接触,侧线接触线在A,B,C柱处的高度分别抬高20mm,120mm,500mm。
7、弓形定位器支座位于线路上方时,定位支座下沿距工支接触线高度应>250毫米。
8、定位柱A柱在距岔心不小于25m即道岔开口不小于1320mm处,相邻支柱B柱与岔心距离在10-15m之间可调。
二、无交叉线岔安装图
1、支柱位于正线侧
2、支柱位于侧线侧
3、武广无交叉线岔。
接触网无交叉线岔施工工法接触网无交叉线岔施工工法一、前言接触网是供电车辆动力集电的设备,其设计和施工至关重要。
传统的接触网施工中,岔线与主线交叉的位置容易引起事故,加大了维护难度。
为了解决这个问题,接触网无交叉线岔施工工法应运而生。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。
二、工法特点接触网无交叉线岔施工工法最大的特点是通过合理设计和精确施工,实现了岔线与主线无交叉。
这种设计减少了交叉处的接触问题,并且降低了事故发生的概率。
此外,该工法还具有施工周期短、施工成本低、使用寿命长等特点。
三、适应范围接触网无交叉线岔施工工法适用于城市轨道交通、高速铁路、普速铁路等各种类型的电气化铁路工程。
尤其对于车流量大、道路交叉密集的城市轨道交通工程,该工法可以更好地改善接触网的性能,提高运行的安全性和稳定性。
四、工艺原理接触网无交叉线岔施工工法的核心原理是通过合理的设计和施工,使岔线与主线无交叉。
具体来说,施工工艺需要结合实际工程,采取合适的技术措施,确保交叉处的接触问题得到解决。
这需要对施工工法与实际工程之间的联系进行分析和解释,以便读者了解该工法的理论依据和实际应用。
五、施工工艺接触网无交叉线岔施工工法涉及多个施工阶段,包括基础施工、主线施工、岔线施工、连接施工等。
在每个施工阶段,都需要严格按照设计要求进行操作,确保施工过程中的每一个细节都得到解决。
详细描述施工过程中的每一个细节,让读者了解施工工艺的具体操作。
六、劳动组织为了保证施工的顺利进行,需要合理的劳动组织。
这包括施工队伍的编组、劳动力的配备、工作任务的分配等。
通过合理的劳动组织,可以提高施工效率,确保施工工期得到控制。
七、机具设备接触网无交叉线岔施工工法需要一系列的机具设备来支持施工工艺的实施。
这些机具设备包括起重机、钻机、焊接设备等。
详细介绍这些机具设备的特点、性能和使用方法,让读者了解其在施工中的作用。
无交叉线岔的最大优点是保证机车能从正线高速通过,在平面布置时,应使侧线接触线位于正线线路中心以外999mm。
因为,机车受电弓一半宽度为673mm,考虑受电弓摆动200mm,富余量100mm,即运行机车受电弓在侧线侧最外端可触及到的尺寸限界为673+200+100=973(mm),其值小于999mm,如果受电弓向侧线反向摆动200mm,则673-200=473(mm),其值大于定位处拉出值333mm,因而机车从正线高速通过岔区时,与区间接触网一样受流,而与侧线接触悬挂无关系,如下图。
由于在悬挂布置时,已充分考虑了受电弓工作长度和摆动量,因此在正线通过时,可以保证侧线接触线与正线线路中心间的距离始终大于受电弓的工作宽度之半加上受电弓的横向摆动量,因而正线高速行车时,受电弓滑板不可能接触到侧线接触线,从而保证了正线高速行车时的绝对安全性,并且在道岔处不存在相对硬点。
当机车从正线进入侧线时,在线间距126~526mm之间为受电弓与侧线接触线的始触,如下图。
此时,因侧线接触悬挂被抬高下锚,侧线接触线高于正线接触线,过岔时,侧线接触线比正线接触线高度以-3/1000坡度降低,因而,受电弓可以顺利过渡到侧线接触悬挂。
在机车由正线向侧线过渡时,由于侧线接触线比正线接触线有较大的抬高,因此,受电弓不会接触侧线接触线而从正线接触线上受流。
随着机车的前进,由于在定位点处受电弓中心与正线接触线之间的距离较小,受电弓经过等高区后逐渐降低至正常高度。
因而,受电弓可以顺利过渡到测线接触悬挂。
当机车从侧线进入正线时,在线间距806~1306mm之间为受电弓与正线接触线的始触区,如下图。
此时,因正线接触线比侧线接触线高4/1000的坡度,过岔后,渡线被抬高下锚,正线接触线高度又低于侧线,因而,受电弓可以顺利过渡到正线接触悬挂。
在机车从侧线向正线开始过渡时,由于侧线低于正线,所以仍由侧线供电,受电弓进入正线接触悬挂的始触区,受电弓滑板的侧面与正线接触线开始接触。
经过等高区以后,由于侧线接触线比正线接触线抬高,随着机车的继续前进,受电弓将逐步脱离侧线接触悬挂而平滑地过渡到正线接触悬挂。