第五章虚拟变量模型.
- 格式:ppt
- 大小:618.00 KB
- 文档页数:79
王中昭制作主要内容:§5.1 虚拟变量模型第五章经典单方程计量经济学模型:专门问题§5.1 、虚拟变量模型王中昭制作一、什么叫虚拟变量•在回归模型中,除了定量变量外,有时还必须引入一些不可量化的经济变量,例如,研究职工的收入问题,需考虑到职工的受教育程度,研究冷饮的需求量或某个旅游胜地的旅游人数,需引入季节因素。
这些都是非量化因素,但又非常重要,需引入模型中。
这些不可量化因素可称为虚拟变量。
•一般地,在模型中的定性变量称为虚拟变量。
或称为二元变量或分类变量等等。
用D表示虚拟变量,以强调它与其它定量变量的区别。
二、引入虚拟变量的方式与特点王中昭制作•①、加法方式:虚拟变量与各解释变量之间存在相加关系。
•特点:模型的截距不同,斜率相同。
•例如:Y=a1+a2D t+b1X t+μtt•当D=1时,截距=a1+a2;t•当D=0时,截距=a1t•②、乘法方式:虚拟变量与各解释变量之间存在相乘关系。
•特点:模型的截距相同,斜率不同。
•例如:Y=a1+ b1X t+b2D t*X t+μtt•当D=1时,斜率=b1+b2;t•当D=0时,斜率=b王中昭制作•③、混合方式:虚拟变量与各解释变量之间同时存在相乘和相加关系。
•特点:模型的截距和斜率均不相同。
•例如:Y t=a1+a2D t+b1X t+b2D t*X t+μt•当Dt =1时,截距=a1+a2,斜率=b1+b2;•当Dt=0时,截距=a1,斜率=b1。
王中昭制作•还可将多个虚拟变量引入模型中以考察多种“定性”因素的影响。
一个以性别为虚拟变量考察企业职工薪金的模型:D 1为性别,D 2为学历。
ii i D D X Y μββββ++++=231210⎩⎨⎧=012D 本科及以上学历本科以下学历职工薪金的加法方式引入的模型为:其中:Y 为企业职工的薪金,X 为工龄,D 1=1,若是男性,D 1=0,若是女性。
王中昭制作引入虚拟变量的作用是:消除异常值、体现其它重要的非量化因素对因变量的影响(如:转折点、季节因素、政策因素、教育程度、民族、性别、地区和资料分组等)、提高模型的可靠性。
Econometrics第五章虚拟变量回归模型(教材第六章)第五章虚拟变量回归模型第一节虚拟变量的性质和引入的意义第二节虚拟变量的引入第三节交互作用效应第四节含虚拟变量的回归模型学习要点虚拟变量的性质,虚拟变量的设定5.1 虚拟变量的性质和引入的意义虚拟变量的性质f定性变量性别(男,女)婚姻状况(已婚,未婚)受教育程度(高等教育,其他)收入水平(高收入,中低收入)肤色(白人,有色人种)政治状况(和平时期,战争时期)f引入虚拟变量(Dummy Variables)1、分离异常因素的影响,例如分析我国GDP的时间序列,必须考虑“文革”因素对国民经济的破坏性影响,剔除不可比的“文革”因素。
2、检验不同属性类型对因变量的作用,例如工资模型中的文化程度、季节对销售额的影响。
3、提高模型的精度,相当与将不同属性的样本合并,扩大了样本量,从而提高了估计精度)。
5.1 虚拟变量的性质和引入的意义5.2 虚拟变量的引入虚变量引入的方式主要有两种f加法方式虚拟变量与其它解释变量在模型中是相加关系,称为虚拟变量的加法引入方式。
加法引入方式引起截距变动5.2 虚拟变量的引入f 虚拟变量的作用在于把定性变量“定量化”:通过赋值0和1,0表示变量不具备某种性质,1表示具备。
f 例,0代表男性,1代表女性;0代表未婚,1代表已婚;等等。
f 这类取值为0和1的变量称为虚拟变量(dummy variables ),通常用符号D 表示。
f 事实上,模型可以只包括虚拟变量(ANOVA 模型):其中,0,1,i i D D ==男性;女性。
12i i iY B B D u =++5.2 虚拟变量的引入虚拟变量的性质f 假定随机扰动项满足男性的期望:5.2 虚拟变量的引入虚拟变量的性质f 食品支出对性别虚拟变量(男=0,女=1)回归的结果:f 结果怎么解释?f 由于男性赋值为0,女性赋值为1,因此,截距项表示取值为0的一类(这里是男性)的均值。
第五章第五章 虚拟变量回归模型虚拟变量回归模型Dummy Variable Regression Models1、什么是虚拟变量?、什么是虚拟变量?名义型变量又称为指标变量、分类变量、定性变量,或者虚拟变量(哑变量)。
2、方差分析模型(ANOVA models )一种类型的回归模型就是解释变量全部是虚拟变量,这样的模型称为Analysis of Variance (ANOV A) models 。
假如我们想检验东(10个省)中(12个省)西(9个省)部三个地区教师的平均收入是否不同。
对三个地区教师工资数据取算术平均值,发现不同,这种不同显著吗?一般用D 表示哑变量,设定如下的哑变量:表示哑变量,设定如下的哑变量: D2 =1 代表东部省份;否则用0表示表示 D3 =1代表中部省份;否则用0表示表示可以写出如下的模型可以写出如下的模型12233i i i i y D D βββε=+++ 9.2.1这类似于一般的多元回归模型的形式。
这类似于一般的多元回归模型的形式。
假定该模型的误差项满足通常OLS 回归的假定,对上式两边取期望,得到回归的假定,对上式两边取期望,得到 对东部地区:对东部地区: ()2312|1,0i i i E y D D ββ===+ 对中部地区:对中部地区: ()2313|0,1i i i E y D D ββ===+ 对西部地区:对西部地区: ()231|0,0i i i E y D D β===假定回归结果为假定回归结果为()()()2322158.622264.6151734.473:0.00000.03490.23300.0901i i i y D D p R =++=1)虚拟变量使用注意)虚拟变量使用注意使用虚拟变量要小心,特别要注意以下几点:使用虚拟变量要小心,特别要注意以下几点:1)一个定性解释变量如果分成m 类,则用m-1个哑变量表示;如果分成m 类用m 个哑变差别截距系数,代表该类别均值比基准别均,前系数称为差别截距系数差别截距,前系数称为的类别可称为差别截距()()()()2321077.231900.2361634.256 3.2889:9.5115 1.3286 2.088910.35390.7266i i ii y D D x t R =+++=4、Chow Test 的替代方法:虚拟变量方法的替代方法:虚拟变量方法多元回归章节的多步Chow Test 程序只能告诉我们两个子区间的回归是否不同,并没有告诉我们这种不同的根源,是由于截距项的差异呢,还是由于斜率项的差异,或者来自两者。
第五章虚拟变量模型和滞后变量模型以下是为大家整理的第五章虚拟变量模型和滞后变量模型的相关范文,本文关键词为第五,虚拟,变量,模型,滞后,5.1,出了,中国,1980,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
1.表5.1中给出了中国1980—20XX年以城乡储蓄存款新增额代表的居民当年储蓄及以gnp代表的居民当年收入的数据。
以1991年为界,判断1991年前和1991年后的两个时期中国居民的储蓄—收入关系是否已发生变化。
表5.11980—20XX年中国居民储蓄与收入数据单位:亿元年份储蓄sgnp年份储蓄s1980118.54517.819912072.81981124.24860.319922438.41982151.753 01.8199332171983217.15957.419946756.41984322.27206.719958143.5 1985407.98989.119968858.5198661510201.4199777591987835.711954 .519987127.71988728.214922.319996214.319891345.416917.82000471 0.619901887.318598.420XX9430估计以下回归模型:Yi??0??1xi??2Di??3(Dixi)?ui其中D?i为引入的虚拟变量:Di??1,1991年前?0,1991年后对上面的模型进行估计,结果如下:所以表达式为:Yi?1535?0.075xi?1981.9Di?0.032(Dixi)(1.40)(4.45)(-1.38)(0.37)gnp21662.526651.934560.54667057494.966850.573142.776967.280579.488228.194346.4从?2和?3的t检验值可以知道,这两个参数显著的为0,所以1991年前和1991年后两个时期的回归结果是相同的。