金融计量经济第五讲虚拟变量模型和Probit,Logit模型
- 格式:ppt
- 大小:1.22 MB
- 文档页数:6
logit 和probit模型的系数解释-回复主题:logit 和probit 模型的系数解释引言logit 模型和probit 模型是广泛应用于概率统计和经济学中的两个模型,用于解释事件发生的概率与相关因素之间的关系。
本文将详细介绍这两个模型的系数解释,并分析它们在实际应用中的区别和适用场景。
一、logit 模型系数解释logit 模型基于二项逻辑回归的概率模型,适用于事件结果是二元变量(如成功/失败,发生/不发生)的情况。
该模型通过计算事件发生的对数几率来建模,并利用最大似然估计来确定系数的值。
1. 系数的正负logit 模型中的系数是事件发生概率对于自变量的变化的影响大小。
系数的正负代表了自变量与事件发生概率之间的正相关或负相关关系。
正系数意味着自变量的增加会增加事件发生概率,而负系数意味着自变量的增加会减少事件发生概率。
2. 系数的大小logit 模型中,系数的大小代表了自变量单位变化对于事件发生概率的影响程度。
系数越大,自变量的一个单位变化对于事件发生概率的影响就越大。
一般来说,当系数的绝对值大于1时,其影响被认为是显著的。
3. 系数的统计显著性logit 模型使用最大似然估计来确定系数的值,同时也提供了对系数是否显著的统计检验。
当系数的p 值小于显著性水平(通常为0.05或0.01)时,我们可以认为该系数是显著的,即具有统计上的置信度。
二、probit 模型系数解释probit 模型是基于正态分布的概率模型,与logit 模型相似,用于解决二元变量的概率建模问题。
不同的是,probit 模型通过计算事件发生的累积分布函数值来建模,并同样利用最大似然估计来确定系数的值。
1. 系数的正负probit 模型中的系数的解释与logit 模型相同,系数的正负代表了自变量与事件发生概率之间的正相关或负相关关系。
正系数意味着自变量的增加会增加事件发生概率,而负系数意味着自变量的增加会减少事件发生概率。
probit模型与logit模型2013-03-30 16:10:17probit模型是一种广义的线性模型。
服从正态分布。
最简单的probit模型就是指被解释变量Y是一个0,1变量,事件发生地概率是依赖于解释变量,即P(Y=1)=f(X),也就是说,Y=1的概率是一个关于X的函数,其中f(.)服从标准正态分布。
若f(.)是累积分布函数,则其为Logistic模型Logit模型(Logit model,也译作“评定模型”,“分类评定模型”,又作Logistic regression,“逻辑回归”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销等统计实证分析的常用方法。
逻辑分布(Logistic distribution)公式P(Y=1│X=x)=exp(x’β)/1+exp(x’β)其中参数β常用极大似然估计。
Logit模型是最早的离散选择模型,也是目前应用最广的模型。
Logit模型是Luce(1959)根据IIA特性首次导出的;Marschark(1960)证明了Logit模型与最大效用理论的一致性;Marley (1965)研究了模型的形式和效用非确定项的分布之间的关系,证明了极值分布可以推导出Logit 形式的模型;McFadden(1974)反过来证明了具有Logit形式的模型效用非确定项一定服从极值分布。
此后Logit模型在心理学、社会学、经济学及交通领域得到了广泛的应用,并衍生发展出了其他离散选择模型,形成了完整的离散选择模型体系,如Probit模型、NL模型(Nest Logit model)、Mixed Logit模型等。
模型假设个人n对选择枝j的效用由效用确定项和随机项两部分构成:Logit模型的应用广泛性的原因主要是因为其概率表达式的显性特点,模型的求解速度快,应用方便。
当模型选择集没有发生变化,而仅仅是当各变量的水平发生变化时(如出行时间发生变化),可以方便的求解各选择枝在新环境下的各选择枝的被选概率。
研究生考试录取相关因素的实验报告一,研究目的通过对南开大学国际经济研究所1999级研究生考试分数及录取情况的研究,引入录取与未录取这一虚拟变量,比较线性概率模型与Probit模型,Logit模型,预测正确率。
二,模型设定表1,南开大学国际经济研究所1999级研究生考试分数及录取情况见数据表定义变量。
上图为样本观测值。
1.线性概率模型根据上面资料建立模型用Eviews 得到回归结果如图: Dependent Variable: Y Method: Least Squares Date: 12/10/10 Time: 20:38 Sample: 1 97Included observations: 97 Variable Coefficient Std. Errort-StatisticProb.??C SCORER-squared????Mean dependent var Adjusted R-squared ????. dependent var . of regression ????Akaike info criterion Sum squared resid ????Schwarz criterion Log likelihood ????F-statistic Durbin-Watson stat ????Prob(F-statistic)参数估计结果为: iY ˆ+ i SCORE Se=( t=p=预测正确率:Forecast: YF Actual: YForecast sample: 1 97 Included observations: 97Root Mean Squared Error Mean Absolute Error????? Mean Absolute Percentage Error Theil Inequality Coefficient? ?????Bias Proportion???????? ?????Variance Proportion? ?????Covariance Proportion?模型Dependent Variable: Y Method: ML - Binary Logit (Quadratic hill climbing)Date: 12/10/10 Time: 21:38Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivatives Variable Coefficient Std. Errorz-StatisticProb.??C SCOREMean dependent var ????. dependent var . of regression ????Akaike info criterion Sum squared resid ????Schwarz criterion Log likelihood ????Hannan-Quinn criter. Restr. log likelihood ????Avg. log likelihood LR statistic (1 df) ????McFadden R-squaredProbability(LR stat)Obs with Dep=0 83 ?????Total obs 97Obs with Dep=1 14得Logit 模型估计结果如下p i = F (y i ) =)6794.07362.243(11i x e +--+ 拐点坐标 ,其中Y=+预测正确率Forecast: YF Actual: YForecast sample: 1 97 Included observations: 97Root Mean Squared Error Mean Absolute Error????? Mean Absolute Percentage Error Theil Inequality Coefficient? ?????Bias Proportion???????? ?????Variance Proportion? ?????Covariance Proportion?模型Dependent Variable: Y Method: ML - Binary Probit (Quadratic hill climbing)Date: 12/10/10 Time: 21:40Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivativesVariable Coefficient Std. Error z-Statistic Prob.??CSCOREMean dependent var ????. dependent var. of regression ????Akaike info criterionSum squared resid ????Schwarz criterionLog likelihood ????Hannan-Quinn criter.Restr. log likelihood ????Avg. log likelihoodLR statistic (1 df) ????McFadden R-squaredProbability(LR stat)Obs with Dep=0 83 ?????Total obs 97Obs with Dep=1 14Probit模型最终估计结果是p i = F(y i) = F+ x i) 拐点坐标,预测正确率Forecast: YFActual: YForecast sample: 1 97Included observations: 97Root Mean Squared ErrorMean Absolute Error?????Mean Absolute Percentage ErrorTheil Inequality Coefficient??????Bias Proportion?????????????Variance Proportion??????Covariance Proportion?预测正确率结论:线性概率模型RMSE= MAE= MAPE=Logit模型 RMSE= MAE= MAPE=Probit模型 RMSE= MAE= MAPE=由上面结果可知线性概率模型的RMSE、MAE、MAPE 均远远大于Logit模型和Probit模型,说明其误差率比Logit模型和Probit模型大很多,所以正确率远远小于Logit模型和Probit模型。
计量经济学logit模型引言:计量经济学是经济学中的一个重要分支,它运用数学和统计方法来研究经济现象和经济问题。
其中,logit模型是计量经济学中常用的一种模型,它被广泛应用于各个领域,如市场研究、消费者行为分析、医学研究等。
本文将对logit模型进行详细介绍,包括其基本原理、应用场景以及优缺点等。
一、logit模型基本原理logit模型是一种广义线性模型,用于描述两个互斥事件之间的关系。
在logit模型中,我们通常关注的是某个事件发生的概率,即几率(odds)。
几率是指某个事件发生的概率与不发生的概率的比值。
logit模型通过将几率转化为一个线性函数来建模,从而实现对事件发生概率的预测。
logit模型的数学表达式为:log(odds) = β0 + β1X1 + β2X2 + ... + βnXn其中,log(odds)表示对数几率,β0、β1、β2...βn是待估计的系数,X1、X2...Xn是自变量。
通过估计系数,我们可以得到自变量对事件发生概率的影响程度。
二、logit模型的应用场景1. 市场研究:logit模型可以用于预测消费者的购买行为。
通过考察不同因素对购买决策的影响,如价格、品牌、促销活动等,可以帮助企业制定有效的市场营销策略。
2. 消费者行为分析:logit模型可以用于研究消费者在不同选择之间的偏好。
例如,在购买某一产品时,消费者面临多个选择,通过分析消费者的偏好,可以为企业提供产品改进和定价策略的建议。
3. 医学研究:logit模型可以用于预测某种疾病的发生概率。
通过考察与疾病相关的因素,如年龄、性别、家族病史等,可以帮助医生和研究人员进行疾病风险评估和预防措施的制定。
三、logit模型的优缺点1. 优点:(1)适用性广泛:logit模型可以应用于各个领域,对于描述二元事件的概率关系具有较好的表达能力。
(2)结果易解释:logit模型的系数可以解释为自变量对事件发生概率的影响程度,便于理解和解释模型结果。