金融计量经济第五讲虚拟变量模型和Probit、Logit模型
- 格式:ppt
- 大小:1.25 MB
- 文档页数:40
logit 和probit模型的系数解释-回复主题:logit 和probit 模型的系数解释引言logit 模型和probit 模型是广泛应用于概率统计和经济学中的两个模型,用于解释事件发生的概率与相关因素之间的关系。
本文将详细介绍这两个模型的系数解释,并分析它们在实际应用中的区别和适用场景。
一、logit 模型系数解释logit 模型基于二项逻辑回归的概率模型,适用于事件结果是二元变量(如成功/失败,发生/不发生)的情况。
该模型通过计算事件发生的对数几率来建模,并利用最大似然估计来确定系数的值。
1. 系数的正负logit 模型中的系数是事件发生概率对于自变量的变化的影响大小。
系数的正负代表了自变量与事件发生概率之间的正相关或负相关关系。
正系数意味着自变量的增加会增加事件发生概率,而负系数意味着自变量的增加会减少事件发生概率。
2. 系数的大小logit 模型中,系数的大小代表了自变量单位变化对于事件发生概率的影响程度。
系数越大,自变量的一个单位变化对于事件发生概率的影响就越大。
一般来说,当系数的绝对值大于1时,其影响被认为是显著的。
3. 系数的统计显著性logit 模型使用最大似然估计来确定系数的值,同时也提供了对系数是否显著的统计检验。
当系数的p 值小于显著性水平(通常为0.05或0.01)时,我们可以认为该系数是显著的,即具有统计上的置信度。
二、probit 模型系数解释probit 模型是基于正态分布的概率模型,与logit 模型相似,用于解决二元变量的概率建模问题。
不同的是,probit 模型通过计算事件发生的累积分布函数值来建模,并同样利用最大似然估计来确定系数的值。
1. 系数的正负probit 模型中的系数的解释与logit 模型相同,系数的正负代表了自变量与事件发生概率之间的正相关或负相关关系。
正系数意味着自变量的增加会增加事件发生概率,而负系数意味着自变量的增加会减少事件发生概率。
logit 和probit模型的系数解释-回复Logit和Probit模型是常用的二元选择模型,用于分析二元变量的选择行为。
它们通常用于解释个体在做出选择时的决策,可以帮助我们理解各种影响因素对选择行为的影响。
在这篇文章中,我将逐步回答有关Logit和Probit模型的系数解释的问题,介绍这两个模型的基本原理、模型形式、系数解释和使用注意事项,以及如何解读模型中的系数。
首先,让我们从基本原理开始,了解Logit和Probit模型的背后逻辑。
Logit 和Probit模型都属于广义线性模型(Generalized Linear Models),它们基于一个相似的假设:选择行为是一个概率事件,可以由一组解释变量进行解释。
这些解释变量可以是个体特征(如年龄、性别、教育水平等),也可以是一些特定的因素(如收入水平、市场利率等)。
模型的目的是通过对这些解释变量的分析,预测和解释个体做出选择的概率。
接下来,让我们详细了解Logit和Probit模型的模型形式。
Logit模型使用的是逻辑函数(Logistic Function),而Probit模型使用的是标准正态分布的累积分布函数。
具体来说,Logit模型的形式为:p(y=1 x) = F(xβ) = 1 / (1 + e^(-xβ))其中,p(y=1 x)表示个体在给定解释变量x的情况下选择y=1的概率,F(x β)表示Logistic函数,x是解释变量的值,β是模型的系数。
相比之下,Probit模型的形式稍有不同:p(y=1 x) = Φ(xβ)其中,Φ(xβ)表示标准正态分布的累积分布函数,其他符号的含义与Logit 模型相同。
两个模型的模型形式不同,但它们都具有类似的特点:在x 趋近于正无穷时,概率趋近于1,而在x 趋近于负无穷时,概率趋近于0。
这种形式可以帮助我们理解个体选择行为的变化趋势。
现在让我们转向系数解释的问题。
模型的系数代表着解释变量对选择行为的影响程度。
probit模型与lo git模型2013-03-30 16:10:17probit模型是一种广义的线性模型。
服从正态分布。
最简单的pr obit模型就是指被解释变量Y是一个0,1变量,事件发生地概率是依赖于解释变量,即P(Y=1)=f(X),也就是说,Y=1的概率是一个关于X的函数,其中f(.)服从标准正态分布。
若f(.)是累积分布函数,则其为Log istic模型Logit模型(Logitmodel,也译作“评定模型”,“分类评定模型”,又作Logi sticregres sion,“逻辑回归”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销等统计实证分析的常用方法。
逻辑分布(Logist ic distri butio n)公式P(Y=1│X=x)=exp(x’β)/1+exp(x’β)其中参数β常用极大似然估计。
Logit模型是最早的离散选择模型,也是目前应用最广的模型。
Logit模型是Luc e(1959)根据IIA特性首次导出的;Marsch ark(1960)证明了Log it模型与最大效用理论的一致性;Marley (1965)研究了模型的形式和效用非确定项的分布之间的关系,证明了极值分布可以推导出Logi t 形式的模型;McFadd en(1974)反过来证明了具有Log it形式的模型效用非确定项一定服从极值分布。
此后Logi t模型在心理学、社会学、经济学及交通领域得到了广泛的应用,并衍生发展出了其他离散选择模型,形成了完整的离散选择模型体系,如Probi t模型、NL模型(Nest Logitmodel)、MixedLogit模型等。
模型假设个人n对选择枝j的效用由效用确定项和随机项两部分构成:Logit模型的应用广泛性的原因主要是因为其概率表达式的显性特点,模型的求解速度快,应用方便。
计量经济学logit模型引言:计量经济学是经济学中的一个重要分支,它运用数学和统计方法来研究经济现象和经济问题。
其中,logit模型是计量经济学中常用的一种模型,它被广泛应用于各个领域,如市场研究、消费者行为分析、医学研究等。
本文将对logit模型进行详细介绍,包括其基本原理、应用场景以及优缺点等。
一、logit模型基本原理logit模型是一种广义线性模型,用于描述两个互斥事件之间的关系。
在logit模型中,我们通常关注的是某个事件发生的概率,即几率(odds)。
几率是指某个事件发生的概率与不发生的概率的比值。
logit模型通过将几率转化为一个线性函数来建模,从而实现对事件发生概率的预测。
logit模型的数学表达式为:log(odds) = β0 + β1X1 + β2X2 + ... + βnXn其中,log(odds)表示对数几率,β0、β1、β2...βn是待估计的系数,X1、X2...Xn是自变量。
通过估计系数,我们可以得到自变量对事件发生概率的影响程度。
二、logit模型的应用场景1. 市场研究:logit模型可以用于预测消费者的购买行为。
通过考察不同因素对购买决策的影响,如价格、品牌、促销活动等,可以帮助企业制定有效的市场营销策略。
2. 消费者行为分析:logit模型可以用于研究消费者在不同选择之间的偏好。
例如,在购买某一产品时,消费者面临多个选择,通过分析消费者的偏好,可以为企业提供产品改进和定价策略的建议。
3. 医学研究:logit模型可以用于预测某种疾病的发生概率。
通过考察与疾病相关的因素,如年龄、性别、家族病史等,可以帮助医生和研究人员进行疾病风险评估和预防措施的制定。
三、logit模型的优缺点1. 优点:(1)适用性广泛:logit模型可以应用于各个领域,对于描述二元事件的概率关系具有较好的表达能力。
(2)结果易解释:logit模型的系数可以解释为自变量对事件发生概率的影响程度,便于理解和解释模型结果。
对外经济贸易大学计量经济学I n t r o d u c t i o n t o E c o n o m e t r i c s导论二值因变量模型:Probit和Logit模型Probit和Logit回归在线性概率模型中,y=1 的概率是x 的线性函数:P (y= 1|x) = β0+ β1x在非线性概率模型中:对于β1>0,Pr(y= 1|x)是x的单增函数;010 ≤ P(y= 1|x) ≤ 1 对所有的x都成立。
02我们希望构造一个非线性函数来刻画此概率。
例如一个“S-curve”的函数。
Probit回归用标准正态分布的累积分布函数Φ(z)来建模y=1 的概率。
令z= β+ β1x,那么Probit回归模型的形式为P(y= 1|x) = Φ(β0+ β1x)其中Φ为标准正态分布的分布函数,z= β0+ β1x是probit模型的“z-value” or “z-index”.例如: 假设β= -2, β1= 3, x=0.4, 那么P(y= 1|x=0.4) = Φ(-2 + 3×0.4) = Φ(-0.8)Pr(z≤ -0.8) = 0.2119该函数的“S-shape”满足了我们的需要:对于β1>0,P(y = 1|x ) 是x 的单增函数010 ≤ P(y = 1|x ) ≤ 1 对于所有的x 都成立02为什么要使用标准正态分布的累积分布函数?便于使用–可以查正态分布表的到相关的概率值(在相关的软件中也很容易得到)相对直观的理解:β0+ β1x = z-value01β1对应于x变化一个单位时z-value 的变化02给定x,β0+β1x是预测的z-value 03. probit deny p_irat, r;Iteration 0: log likelihood = -872.0853Iteration 1: log likelihood = -835.6633Iteration 2: log likelihood = -831.80534Iteration 3: log likelihood = -831.79234Probit estimates Number of obs= 2380Wald chi2(1) = 40.68Prob> chi2 = 0.0000 Log likelihood = -831.79234 Pseudo R2 = 0.0462 ------------------------------------------------------------------------------| Robustdeny | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+----------------------------------------------------------------p_irat| 2.967908 .4653114 6.38 0.000 2.055914 3.879901 _cons | -2.194159 .1649721 -13.30 0.000 -2.517499 -1.87082 ----------------------------------------------------------------------------P(deny=1|P Iratio)= Φ(-2.19 + 2.97×P/I ratio)(0.16) (0.47)还款收入比前面的系数是正的: 是否符合实际?01标准差的理解和普通的回归一样02 P(deny=1| P Iratio)= Φ(-2.19 + 2.97×P/I ratio )(0.16) (0.47)STATA Example: HMDA data 当P/I ratio 从0.3 增加到0.4:04 P(deny=1| P Iratio =0.4)= Φ (-2.19+2.97×0.4) = Φ (-1.00) =0.159被拒概率的预测值从0.097 升至0.15905概率预测值:03 P(deny=1| P Iratio =0.3)= Φ (-2.19+2.97×0.3) = Φ (-1.30) = 0.097多个自变量的Probit回归模型Pr(Y= 1|X1, X2) = Φ (β0+ β1X1+ β2X2)Φ 是正态分布的累积分布函数.01z= β0+ β1X1+ β2X2是此probit模型的“z-value”或者“z-index”.02β1是固定X2,X1变化一个单位对z-score 的效应。
logit 和probit模型的系数解释-回复【logit 和probit 模型的系数解释】1. 引言在统计学和经济学中,logit模型和probit模型是两种常见的二元选择模型,它们被广泛应用于解释和预测离散选择的行为。
本文将详细介绍logit 和probit模型的系数解释步骤,并对其应用领域和优缺点进行讨论。
2. 模型背景logit模型和probit模型是建立在二元选择数据上的概率模型。
在这两种模型中,我们假设个体i选择某个选项的概率是一个关于自变量X的非线性函数F(X)的模型,其中F(X)是一个累积分布函数(CDF)。
logit模型和probit模型是两种常见的CDF函数选择,分别使用逻辑函数(logistic function)和正态分布函数(normal distribution function)进行建模。
3. logit模型的系数解释logit模型的系数解释可以通过观察变量系数的大小、正负以及显著性水平来进行。
首先,系数的大小可以表示预测变量在选择行为中的影响程度。
一个正的系数表示该变量与选择行为正相关,即该变量的增加会增加选择某个选项的概率。
一个负的系数表示该变量与选择行为负相关,即该变量的增加会降低选择某个选项的概率。
其次,系数的正负可以表明变量对选择行为的方向性影响。
最后,统计显著性测试可以帮助我们确定该系数是否显著不等于零,即该变量对选择行为的影响是否存在。
4. probit模型的系数解释probit模型的系数解释与logit模型类似。
同样,我们可以通过观察变量系数的大小、正负以及显著性水平来解释系数。
不同的是,probit模型中的系数解释基于正态分布函数的特性。
具体而言,一个正的系数表示该变量的增加会使选择某个选项的概率上升,并且该上升符合正态分布函数的曲线形状。
一个负的系数则说明选择行为概率会下降。
同样,系数的正负可以揭示变量对选择行为的方向性影响。
最后,显著性测试也可以用来确认系数的显著性。
probit logit 解析表达式摘要:1.概述Probit 和Logit 模型2.介绍Probit 和Logit 模型的解析表达式3.对比Probit 和Logit 模型的解析表达式4.总结Probit 和Logit 模型的解析表达式正文:Probit 和Logit 模型是两种广泛应用于二元选择模型的统计方法,如个体是否选择某项服务,是否购买某件商品等。
这两种模型都是基于概率理论的线性模型,其主要区别在于它们对概率的估计方式不同。
Probit 模型使用正态分布来估计概率,而Logit 模型则使用逻辑斯蒂函数来估计概率。
Probit 模型的解析表达式为:P(Y=1|X=x) = Phi(β0 + β1X1 + β2X2 +...+ βnXn)其中,Y 表示二元变量(通常为0 或1),X 表示自变量,β0、β1、...、βn 是模型参数,Φ是标准正态分布的累积分布函数。
Logit 模型的解析表达式为:Log(P(Y=1|X=x)) = β0 + β1X1 + β2X2 +...+ βnXn其中,P(Y=1|X=x) 表示给定X 的情况下Y 等于1 的概率,其他符号含义与Probit 模型相同。
对比Probit 和Logit 模型的解析表达式,我们可以发现,两者在形式上存在明显差异。
Probit 模型的解析表达式中包含了标准正态分布的累积分布函数Φ,而Logit 模型的解析表达式中则包含了对数函数。
这两种表达式在实际应用中的计算过程也有所不同。
Probit 模型需要通过查表或计算器等工具获取Φ值,而Logit 模型则可以直接进行计算。
总的来说,Probit 和Logit 模型的解析表达式是它们在二元选择问题中的核心部分。
第五章离散选择模型在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。
我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。
本章主要介绍以下内容:1、为什么会有离散选择模型。
2、二元离散选择模型的表示。
3、线性概率模型估计的缺陷。
4、Logit模型和Probit模型的建立与应用。
第一节模型的基础与对应的现象一、问题的提出在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。
1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。
例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。
由离散数据建立的模型称为离散选择模型。
2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。
例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。
这种类型的数据成为审查数据。
再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。
这两种数据所建立的模型称为受限被解释变量模型。
有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。
下面是几个离散数据的例子。
例5.1 研究家庭是否购买住房。
由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即1,0Y ⎧=⎨⎩购买,不购买我们希望研究买房的可能性,即概率(1)P Y =的大小。