线性代数--第二章
- 格式:pptx
- 大小:2.48 MB
- 文档页数:194
第2章对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。
矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。
任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。
通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。
考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。
总而言之,初等变换不会改变矩阵的秩。
因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。
矩阵的秩,同时又可定义为不为零的子式的最高阶数。
满秩矩阵的行列式不等于零。
非满秩矩阵的行列式必为零。
既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。
另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r<n,有无穷多解。
齐次线性方程组的解的结构问题,可以用基础解系来表示。
当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。
通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。
非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。
在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。
矩阵的加法和数乘,与向量的运算类同。
矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。
即可以把一个矩阵看作是一种线性变换在数学上的表述。
矩阵的乘法,反映的是线性变换的叠加。
如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。
第二章矩阵第一节矩阵的概念1、分类:行矩阵:只有一行的矩阵列矩阵:只有一列的矩阵零矩阵O:元素全为零的矩阵单位阵E:主对角线上元素为1,其他元素为0的方阵数量阵(纯量阵):λE对角阵:不在主对角线上的元素都为0的方阵上(下)三角阵:主对角线上以下(上)的元素全为0的方阵2、两矩阵同型:两个矩阵行数且列数都相等两矩阵相等:两矩阵同型,且对应元素相等。
记做A=B。
3、不同型的零矩阵是不相等的第二节矩阵的运算设A,B,C为m×n矩阵,λ, μ为数一、加法:只有同型矩阵才能进行加法运算(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+O=A二、减法:A-B=A+(-B) -B称为B的负矩阵三、乘法:1、只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(行矩阵)的行数时,两个矩阵才能相乘。
简记为:(m×s)(s×n)=(m×n)例: A为2×3矩阵,B为3×2矩阵,则AB=C为2×2矩阵2、数与矩阵:(1)(λμ)A=λ(μA)=μ(λA)(2)(λ+μ)A=λA+μA(3)λ(A+B)=λA+λ B(4)1*A=A, (-1)*A=-A矩阵与矩阵:(1)结合律:(AB)C=A(BC)(2)分配律:A(B+C)=AB+AC(B+C)A=BA+CA(3)λ(AB)=(λA)B=A(λB)(4)EA=AE=A(5)A k A l=A k+l(6)(A k)l=A kl3、矩阵乘法不满足交换律,即(AB)C≠(AC)B另外:(1)一般有AB≠BA (A与B可交换时,等式成立)(2)AB=O,不能推出A=O或B=O(3)AB=AC,A≠O,不能推出B=C(4)(AB)k≠A k B k(A与B可交换时,等式成立)4、可交换的:对于两个n阶方阵A,B,有AB=BA,则称A与B是可交换的。
纯量阵与任意同行方阵都是可交换的。
第二章 线性变换与矩阵代数学最基本的研究对象是代数系统本身的结构和不同代数系统之间的联系.上一章,对线性空间这种最重要和最基本的代数系统作了比较深入的研究.本章讨论线性空间之间的联系,即线性空间之间的映射,而很多时候这种映射被称为变换.一、教学目标与基本要求线性变换和矩阵 掌握线性变换的概念及性质,以及逆变换的概念,掌握线性变换的矩阵表示方法,掌握矩阵线性空间的概念以及矩阵的乘法,了解矩阵的转置及分块,掌握方阵的逆的概念及其求法,了解矩阵的初等变换及初等方阵的概念(一)重要内容及定理1.线性变换概念及其性质设V ,W 是两个线性空间.一个V 至W 的线性映射T ,就被称为V 至W 的线性变换. 定义2.1.1集合})(|{θx x x =∈T V 且被称为线性变换T 的零空间(或称为T 的核),记为)(T N .定理2.1.1T 的值域W V T ⊂)(是W 的一个子空间.T 映V 的零元素为W 的零元素. 定理2.1.2若V 是有限维的,则)(V T 也是有限维的,且有dim N (T )+dim )(V T =dim V即一个线性变换的零维与秩之和等于其定义域的维数.定义2.1.2设S ,T 是任意的V 至W 的线性变换,c 是任意实数.按如下方式定义线性变换的加法和数乘:)()())((x x x T S T S +=+.)())((x x cT cT =.这里x 是V 中任意元素.容易验证,按此定义的线性变换的加法和数乘,使全体V 至W 的线性变换构成之集成为一个线性空间,将其记为)(W V L ,.定义2.1.3设U ,V ,W 是任意三个集合.T :U →V ,S :V →W 是两个映射,复合映射ST :U →W 按如下方式定义:)]([))((x T S x ST =,任意U ∈x .映射的复合显然不满足交换律.但满足结合律,即若T :U →V ,S :V →W ,R :W →X ,则有T RS ST R )()(=.定义2.1.4对映射T :V →V 按如下方式定义其幂:I T =0,1n-n TT T =(n ≥1取整数)这里I 是恒等映射.2.逆 变 换定义2.2.1给定集合V ,W 及映射T :V →W .映射S :)(V T →V 被称为T 的左逆,如果对任何x ∈V ,有x x T S =)]([.此时,若用V I 记V 中的恒等映射,则有=ST V I .映射R :)(V T →V 被称为T 的右逆,如果对任意y ∈)(V T ,有y y R T =)]([.此时,若用V)T (I 记)(V T 中的恒等映射,则有=TR V)T (I .定义2.2.2设T :V →W 是1-1映射,则T 有唯一左逆(它同时是T 的右逆),将其记为1-T .此时称T 是可逆映射,并称1-T 为的T 逆.定理2.2.1 一个映射T :V →W 最多有一个左逆.若T 有左逆S ,则S 也是T 的右逆. 定理2.2.2若映射T :V →W 是单射,则T 必有左逆.反之亦真.定理2.2.3设V ,W 是线性空间,)(W V L T ,∈,则下列命题等价:(1)T 是V 和)(V T 间的1-1映射.(2)T 是可逆映射,其逆1-T :)(V T →V 是线性变换.(3)θx =)(T 蕴涵θx =.换言之,零空间N (T )只含V 的零元素.定理2.2.4设V ,W 是线性空间,V 是有限维的(设dim V n =),)(W V L T ,∈.则下列命题等价:(1)T 是V 和)(V T 间的1-1映射.(2)若}{1k e e ,, 是V 中独立集,则)}()({1k T T e e ,,是)(V T 中独立集. (3) dim )(V T n =.(4)若}{1n e e ,, 是V 的一组基,则)}()({1n T T e e ,,是)(V T 的一组基.3 线性变换的矩阵表示定理2.3.1设}{1n e e ,, 是n 维空间V 的一组基,n u u ,, 1是线性空间W 中任意n 个元素.则唯一存在线性变换T :V →W , 使k k T u e =)(,n k ,,1=. (2.3.1) 而且,此变换对任意∑==n k k k x 1e x ∈V ,有∑==n k k k x T 1)(u x .定理2.3.2设V 是n 维线性空间, }{1n e e ,, 是V 的一组基;W 是m 维线性空间, }{1m w w ,, 是W 的一组基.T :V →W 是线性变换,][ik a 是T 在给定基下的矩阵表示.则对任意∑==n k k kx 1e x ∈V ,若设∑==mi i i y T 1)(w x ,则 ∑==n k k ik i x ay 1,m i ,,1=. 定理2.3.3设V 和W 是有限维线性空间,dim V n =,dim W m =,)(W V L T ,∈,)(dim V T r =是T 的秩.则存在V 中一组基}{1n e e ,, 及W 中一组基}{1m w w ,, ,使i i T w e =)(,r i ,,1=, θe =)(i T ,n r i ,,1+=.4 矩阵线性空间定义2.4.1设][ik a A =,][ik b B =是两个同型矩阵,c 是任意数.矩阵A 与B 的和(记为B A +)及数c 与矩阵A 的乘积(记为cA 或Ac )定义为][ik ik b a B A +=+,cA =][ik ca Ac =.重要结论:设V 和W 是两个线性空间,dim V n =,dim W m =,V 和W 的基已经取定.则线性空间)(W V L ,与线性空间n m M ,是同构的5 矩阵乘法定义2.5.1设p m ij a A ⨯=][及n p ij b B ⨯=][是任意两个p m ⨯及n p ⨯矩阵.则矩阵A 与矩阵B 的乘积AB 定义为n m ij c ⨯][,这里∑==pk kj ik ij b a c 1,m i ,,1=;n k ,, 1=. 6 矩阵的转置及分块定义2.6.1给定矩阵n m ij a A ⨯=][.称第i 行第j 列元素为ji a 的m n ⨯矩阵为A 的转置矩阵,记为TA .定义2.6.2设][ij a A =为n 阶方阵.若有A A =T ,即A 的元素满足ji ij a a = )1(n j i ,,, =,则称A 为对称阵.7 方阵的逆矩阵的初等变换和初等方阵定义2.7.1设A 是一个n 阶方阵.若另有n 阶方阵B 使得n E BA =,则称A 是非奇异方阵,并称B 是A 的左逆.(1)对调两行(对调i ,j 两行,记着ij R ).(2)以数0≠k 乘某一行中所有元素(第i 行乘k ,记着i kR ).(3)把某一行所有元素的k 倍加到另一行相应元素上去(第j 行的k 倍加到第i 行上,记着j i kR R +).定理2.7.2设A 是一个n m ⨯矩阵,对A 施行一次行初等变换,相当于以相应的m 阶初等方阵左乘A ;对A 施行一次列初等变换, 相当于以相应的n 阶初等方阵右乘A .定理2.7.3设A 是可逆方阵,则存在有限个初等方阵1F ,2F ,…, l F ,使 l F F F A 21=.(二)领会1. 领会线性变换的定义;2. 领会线性变换与矩阵的关系;3. 领会线性变换空间与同型矩阵空间的同构;。
线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a 称为m 行n 列矩阵;简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元;说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵; 扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A ; 记作:A n; 行列矩阵:只有一行列的矩阵;也称行列向量; 同型矩阵:两矩阵的行数相等,列数也相等; 相等矩阵:AB 同型,且对应元素相等;记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零;单位阵:主对角线上元素都是1,其它元素都是0,记作:E n 不引起混淆时,也可表示为E 课本P29—P31注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同;第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算;课本P33 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-;课本P33数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵,,λμ为数()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+;课本P33矩阵相加与数乘矩阵统称为矩阵的线性运算;矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫ ⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1;A 与B 能相乘的条件是:A 的列数=B 的行数;2;矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵;3;对于n 阶方阵A 和B,若AB=BA,则称A 与B 是可交换的;矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯== ()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即kk A A AA =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数;规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠但也有例外课本P36纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍;且有()(E)E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的;课本P36 转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,如122458A ⎛⎫= ⎪⎝⎭,142528T A ⎛⎫⎪= ⎪ ⎪⎝⎭; 转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =;课本P39方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或注意矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n 阶行列式则是这些数按一定的运算法则所确定的一个数; 运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===课本P40对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij jia a i j n ==那么A 称为对称阵;说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的;即反对称矩阵A =a ij 中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵; 性质 AA A A A E **==易忘知识点课本P总结1只有当两个矩阵是同型矩阵时,才能进行加法运算;2只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律;3矩阵的数乘运算与行列式的数乘运算不同;第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵;1A A -的逆矩阵记作,1A B -=即;说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵;3.若A 是可逆矩阵,则A 的逆矩阵是唯一的;定理1 矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=重要证明见课本P奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵;即0A A A ⇔⇔≠可逆为非奇异矩阵;推论若(A=E)AB E =或B ,则1B A -=证明见课本P求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。