线性代数第二章矩阵
- 格式:ppt
- 大小:13.04 MB
- 文档页数:66
第二部分矩阵本章概述矩阵是线性代数的重要内容,也是研究线性方程组和其它各章的主要工具。
主要讨论矩阵的各种运算的概念和性质。
在自学考试中,所占比例是各章之最。
按考试大纲的规定,第二章占26分左右。
而由于第三,四,五,六各章的讨论中都必须以矩阵作为主要工具,故加上试题中必须应用矩阵运算解决的题目的比例就要占到50分以上了。
以改版后的三次考试为例,看下表按考试大纲所占分数07.4 07.7 07.10 直接考矩阵这一章的26分左右31分34分38分加上其它章中必须用矩阵运算的所占分数51分53分67分由此矩阵这一章的重要性可见一般。
2.1 线性方程组和矩阵的定义2.1.1 线性方程组n元线性方程组的一般形式为特别若,称这样的方程组为齐次方程组。
称数表为该线性方程组的系数矩阵;称数表为该线性方程组的增广矩阵。
事实上,给定了线性方程组,就惟一地确定了它的增广矩阵;反过来,只要给定一个m×(n+1)阶矩阵,就能惟一地确定一个以它为增广矩阵的n个未知数,m个方程的线性方程组。
例1 写出下面线性方程组的系数矩阵和增广矩阵【答疑编号12020101】例2 写出以下面矩阵为增广矩阵的线性方程组【答疑编号12020102】2.1.2 矩阵的概念一、矩阵的定义定义2.1.1 我们称由mn个数排成的m行n列的数表为m×n阶矩阵,也可记为为矩阵A第i行,第j列的元素。
注意:矩阵和行列式的区别。
二、几类特殊的矩阵1.所有元素都为零的矩阵称为零矩阵,记为O。
例如都是零矩阵。
2.若A的行数m=1,则称为行矩阵,也称为n维行向量。
若A的列数n=1,则称为列矩阵,也称为m维列向量。
3.若矩阵A的行数=列数=n,则称矩阵A为n阶方阵,或简称A为n阶阵。
如n个未知数,n个方程的线性方程组的系数矩阵。
4.称n阶方阵为n阶对角阵。
特别若上述对角阵中,,称矩阵为数量矩阵,如果其中λ=1,上述数量阵为,称为n阶单位阵。
5.上(下)三角阵称形如的矩阵为上(下)三角矩阵。
第二章 矩阵及其运算2.1 目的要求1.理解矩阵的概念;2.了解单位矩阵, 对角矩阵, 三角矩阵, 对称矩阵以及它们的基本性质; 3.掌握矩阵的线性运算, 乘法, 转置及其运算规则;4.理解逆矩阵的概念; 掌握可逆矩阵的性质; 会用伴随矩阵求矩阵的逆; 5.了解分块矩阵的概念, 了解分块矩阵的运算法则.2.2重要公式和结论1.对于任意方阵A , 总有 E A =A A =AA **,如果0≠A , 即A 为可逆矩阵, 则有 *1A AA1=−或1*A A A −=; 2.数乘以方阵的关系 , TTk k A A =)(111)(−−=A A kk , A A n k k =, A A 11=−;3.矩阵乘法的关系T T T A B (AB)=, , 111A B (AB)−−−=BA AB =;,()22T TA)(A =()2112A )(A−−=,22A A =;4.若A 、均为可逆矩阵, 则; ; B 10B A 0−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=−−0AB 011⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−111B 00A B 00A ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B 0CB A A B 0C A ;; ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B CA B 0A BC 0A 5.已知A 为一个n 阶可逆矩阵, 则有)2(≥n 1n *AA −=;6.已知A 为一个阶矩阵,则n A A nk k =,1−=n nk k A A *,()1)1(*−−=n n n kk AA ;7.已知A 为一个n 阶可逆矩阵, 则有)3(≥n A AA 2**)(−=n .2.3典型例题例2.1计算:(1) (2) .⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(()n n b b a a L M 11⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛解 (1) =;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(∑==+n k k k n n b a b a b a 111L (2) . ()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n n n n n n n b a b a b a b a b a b a b a b a b a b b a a L M M M L L L M 21222121211111例2.2 设 为三阶矩阵, 且已知)(j i a =A a =A , *A 为A 的伴随矩阵又⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211na na na ma ma ma la la la B , 求 *BA 解 由于 CA B =⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211333231232221131211000000a a a a a a a a a n m l na na na ma ma ma la la la 其中, ,故⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n m l 000000C ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛====an am al a 000000C E A C CAA BA **.例2.3 设, , 求的关系, 使⎟⎟⎠⎞⎜⎜⎝⎛=3421A ⎟⎟⎠⎞⎜⎜⎝⎛=y x 21B y x 与A 与是可交换的. B 解 要使A , 可交换, 即B BA AB =又⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y x y x y x 3464214213421AB ⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y y x x y x 3442324342121BA 故的充要条件是 , 得到 BA AB =⎪⎪⎩⎪⎪⎨⎧+=++=++=++=+yy y x x y x x 343442643221441−=y x .例2.4 设n ×=1)21,0,,0,21(L C , , ,计算C C E A T −=C 2C E B T +=AB .解: C)C C)(E C (E AB TT +−=C CC 2C C C C 2C E T T T T −−+= )C (CC 2C C C E TTT−+=C C 212C C E T T ××−+=E = 故 E AB =.例2.5 设. , 求⎟⎟⎠⎞⎜⎜⎝⎛=5423A 1−A解 由于075423≠==A , 故A 是可逆的,又, 故⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛=342522122111*A A A A A ⎟⎟⎠⎞⎜⎜⎝⎛−−==−3425711*1A A A . 例2.6 设阶矩阵n A 的伴随矩阵为*A , 是常数, 试证 k ()*A A 1*−=n k k . 证明 把看作一个整体, 根据A k E A AA *=, 有 ()E A A A )()(*k k k =,由于A 是可逆的,则也是可逆的,故)(A k ()*11111*1)()(A A A A A A A A −−−−−==×==n n n k k kk k k k . 证毕例2.7 设, ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2111021100210001A *A 为A 的伴随矩阵, 求. **)(A 解 由于 082111021100210001≠==A , 故A 是可逆的, *A 是可逆;根据E A AA *=, 有 E A )(A A ****=,方程左右两边同时左乘以A ,得 E A A )(A AA ****=, 即 A A A)(A ***1=, 又 1n *A A −=, A 是4阶矩阵,故 10001200()6411201112−⎛⎞⎜⎟⎜⎟===⎜⎟⎜⎟⎜⎟⎝⎠n 22**A AA AA . 例2.8 设A , 是n 阶方阵, 若B AB E −可逆, 试证 BA E −也可逆 .证明 由于A AB)AB)(E B(E E BA E 1−−−−=−A AB)BAB)(E (B E 1−−−−=A AB)BA)B(E (E E 1−−−−=移项得到E A AB)BA)B(E (E BA)(E 1=−−+−−即E A)AB)B(E BA)(E (E 1=−−−−根据可逆矩阵的定义, BA E −可逆, 并且.证毕A AB)B(E E BA)(E 11−−−+=−例2.9 设, 求.⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−=00010000200010L L MM M MLL n n n A 1−nA 解 对矩阵分块, , 其中 n A ⎟⎟⎠⎞⎜⎜⎝⎛=0CB 0A n )(n =C , , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=100020001n L M M M L L B 故1(1n=−C , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=−)1(10002100011n L M M M LLB, 根据分块矩阵的逆矩阵公式⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=−−−−0B C 00C B 0A 1111n⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎝⎛−=0)1(100021000011000n n LM M M M L L L . 例2.10 设阶方阵 , , 求, 使n ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100001010A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=021102341B X B AX =. 解 由于01100001010≠−==A , 故A 是可逆的; 并且 ;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000010101A 方程左右两边同时左乘以1−A 得到⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−021341102021102341100001010B A X 1.例2.11 设,求, 使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=134030201A X X A E AX 2+=+.解 对方程移项得 E A X AX 2−=−, 根据矩阵乘法分配律得E A E)X (A 2−=−由于 016034020200≠−==−E A , 故E A −可逆.方程左右两边同时左乘以, 得(1−−E A )()()E)(A E A E)(A E A E)(A X 121+−−=−−=−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=234040202E)(A例2.12 设, 求. 其中E BA)B X(E TT1=−−X , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000110001100011A ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2000120031204312B 解 根据乘法转置公式得 TTT(AB)A B =T T 1T T1A)(B A)]B [B(E BA)B (E −=−=−−−又 011234012300120001)(≠==−TA B , 故可逆, 对方程 右乘以[, 得到 . T )(A B −E A)X(B T=−]1)(−−T A B []⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−12100121001200011T A)(B X例2.13 设A 的伴随矩阵, 求, 使. ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=8030010100100001*A B 3E BA ABA 11+=−−解 根据, 得到 3E BA ABA 11+=−−()3E BA E A 1=−−故 皆是可逆的, 并且A E,A −()()()1111A E A A E AB −−−−−=−=33[]1111)A (E E))(A (A −−−−−=−=33又由1n *AA −=, 8*=A , , 故 4=n 2=A ,1*1*11)A E ()A (E )A (E B −−−−⎥⎦⎤⎢⎣⎡−=−=−=22132133 11*1*60300101001000016)2(6)2(213−−−⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−=−=⎥⎦⎤⎢⎣⎡−=A E A E B . ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=1030060600600006例2.14 设阶矩阵n A 的伴随矩阵为*A , 试证(1) 若0=A , 则0*=A ; (2) 1*−=n AA ; (3) 1)1(*)(−−=n n n kk AA .证明 (1 ) 根据0=A 得到0A =与0A ≠两种情况,① 当0A =时, 则, 显然0A *=0*=A ;② 当0A ≠时, 利用反证法, 不妨反设0*≠A ,则可逆, 即存在*A 1*−A , 又由于E A AA *=,0=A ,得到0)(A 0)(A A A 1*1*=⋅==−−, 这与矛盾.假设0A ≠0*≠A 不成立.故综合①②得到若0=A , 则0*=A .(2 ) 分0=A 和0≠A 两种情况,① 当0=A 时, 由(1)得到0*=A , 显然有1*−=n AA .② 当0≠A 时, 则A 可逆, 由E A AA *=引入行列式得到n*A A A =, 从而1n *AA −=.(3 ) 根据(2 )中1n *AA −=得到1)1(11*)()()(−−−−===n n n n n n k k k k AA A A .例2.15 设A , 均为阶方阵, B n 2=A , 3−=B , 求1*B)(A −2.解1*n1*1*1*B A B A B)(A B)(A −−−−⎟⎠⎞⎜⎝⎛===212122, 又根据E BB1=−, 得到1=−1B B , 即BB 11=−, 以及1−=n A A *,所以6131)2(212121−=⎟⎠⎞⎜⎝⎛−××⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛=−−−n n1*n1*B A B)(A例2.16 设5阶矩阵A , 且2=A , 求A A −. 解 由于2=A , ()()6423225−=×−=−=−=−A A AA A 5.例2.17 设A , 均为3阶矩阵, B 2=A , 21=B , 求()*AB . 解()()122122=⎟⎠⎞⎜⎝⎛====−−1313*****ABA B A B AB . 例2.18 设阶矩阵n A , 有E A m=, 若A 中每个元素用其对应的代数余子式代替, 得到矩阵, 求.ij a ij A B mB 解 依题意, 得 , (其中T *)(A B =*A 为A 的伴随矩阵),由E A m=, 得到1=m A ,即A 是可逆的,故 1ΤΤ1Τ1Τ*)(ΑΑ)(ΑΑ)ΑΑ()(ΑΒ−−−====,又由, 得111A B (AB)−−−=T T T A B (AB)=()()222112)(,)(T T A A A A ==−−,所以 ()()11)()(−−=T m mTA A , 故()()E A A AB===−−11)()(Tm T m mm.例2.19 设⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=21232321A , 且E A 6=, 求11A 解 由 E A 6=, 得E A12=, 即E AA 11=, 故⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=−212323211A A 11. 例2.20 设, )5,4,3,2,1(=A ⎟⎠⎞⎜⎝⎛=51,41,31,21,1B , 又B A X T =, 求n X 解 由X XX XnL =B)(A B)B)(A(A T TTL =()()()B BA BA BA A T T T T L =又因为,故 5=T BA ⎟⎠⎞⎜⎝⎛⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛==−−514131211543215511n n n B A X T ⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=−145352555413424534312335242321251413121151n . 例2.21 设, 满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100000001B ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=112012001P PB AP =,求A , 9A .解.由于01112012001≠−=−=P , 故是可逆的,且,P ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=−1140120011P 由题意, , ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==−1140120011000000011120120011PBPA ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001又 A PBP P PB PBP PBPA 119119====−−−−L ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001.例2.22 设, 求⎟⎟⎠⎞⎜⎜⎝⎛=101λA nA . 解 由于 ,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==1021101101λλλAA A 2⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==10311011021λλλA A A 23不妨假设结论,下用归纳法证明. 当⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA 2=k 时,显然成立, 不妨设时也成立, 即, 则当1−=n k ⎟⎟⎠⎞⎜⎜⎝⎛−=−10)1(11λn n An k =时⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−10110110)1(1λλλn n A A A 1n n ,故结论成立, 即. ⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA2.4 独立作业2.4.1 基础练习1.设阶矩阵, 且n )(ij a =A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n λλO 1D )(j i j i ≠≠λλ则=AD (A )()ij i a λ ; (B )()j ij a λ; (C )()ij i a 1+λ ; (D )以上都不对. 2.设A 、均为阶矩阵,下列命题正确的是 B n(A )0B 0A 0AB ==⇒=或; (B )0B 0A 0AB ≠≠⇔≠且; (C )00==⇒=B A 0AB 或; (D )00≠≠⇔≠B A 0AB 且. 3.设阶矩阵满足, 则有 n E ABC =(A ) (B )E ACB =E CBA = (C )E BAC = (D )E BCA =4.设,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=120001430A =A k(A ) (B ) (C )311k −311k k 11− (D ) k 115.下列命题正确的是 (A )若A 是阶方阵,且n 0A ≠,则A 可逆; (B )若A 、是阶可逆方阵,则B n B A +也可逆; (C )若A 是不可逆方阵,则必有0A =; (D )若A 是阶方阵,则n A 可逆⇔TA 可逆.6.已知,,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=210413121A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=121312410B ()T AB 7.设,,则⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=0111,300121A A ⎟⎟⎠⎞⎜⎜⎝⎛=21A 00A A =−1A8.已知,则 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=300041003A =−−1)(2E A9.设矩阵满足,其中B 9E 3B A AB 2−=−E 为三阶单位矩阵,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=400020101A , 则 =B10.已知,满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=200012021B A B AB =−,则=A 11.设,,求矩阵,使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=311201A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=041012B X B X A =+23成立.12.设,计算⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=141021001A ()()()2181644A A E A E A E +−−−−T .13.设,,求矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000210032101321B ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=1000210002101021C A , 使成立.T T 1C B)A C(2E =−−14.设矩阵,,,⎟⎟⎠⎞⎜⎜⎝⎛=3152P ⎟⎟⎠⎞⎜⎜⎝⎛−=1001B ⎟⎟⎠⎞⎜⎜⎝⎛−−=2153Q PBQ A =, 试计算QP 和nA .15.设(k 为正整数),(1)试证 ;0A k =1k 1A A E A)(E −−+++=−L (2)求. 1)4(−−E)(A 2.4.2提高练习1.设A 为阶矩阵,且有n A A 2=,则结论正确的是________________ (A)(B) 0A =E A = (C) 若A 不可逆,则0A = (D) 若A 可逆,则E A 2=2.已知,,且⎟⎟⎠⎞⎜⎜⎝⎛=22211211a a a a A ⎟⎟⎠⎞⎜⎜⎝⎛=y a x a 2111B 1,1==B A ,则=+B A (A) 2; (B) 3; (C) 4; (D) 5.3.设 ,是两个阶方阵,则)(ij a =A )(ij b =B n AB 的第行是 i (A ) 的各行的线性组合,组合系数是B A 的第行各元素; i (B ) A 的各行的线性组合,组合系数是的第行各元素; B i (C ) 的各列的线性组合,组合系数是B A 的第行各元素; i (D ) 的各行的线性组合,组合系数是B A 的第列各元素. i 4.设A 、、C 为可逆矩阵,则B ()=−1T ACB(A ) ; (B ) ;()1−−−C A B11T 11T A C B −−(C ) ( D ) ()1T 11B CA −−−()11T1A C B−−−.5.设A 为阶矩阵,为其伴随矩阵,则n *A =*A k (A ) A n k (B) nk A (C)1−n n k A(D)nn kA1−6.设三阶矩阵A 的行列式3=A ,则=−−*123A A7.设阶矩阵n A 的行列式5=A ,则()=−1*5A8.已知 则⎟⎟⎠⎞⎜⎜⎝⎛−=θθθθcos sin sin cos A =−1A 9.设阶矩阵n A 、、C ,且B E CA BC AB ===,则 =++222C B A10.设A 、是四阶矩阵,且B 2=A ,21=B ,则()=*AB11.设三阶矩阵A 、Β满足关系式,BA 6A BA A 1+=−⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=710004100031A ,求 B 12.设 B A B A AX AXB 22+−+=,求.其中,X⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=100110111A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=200020102B 13.设A 、均为阶方阵,若B n AB B A =+,求()1−−E A .14.设, ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=211021001A *A 为A 的伴随矩阵, 求.1*)(−A第二章 参考答案与提示2.4.1 基础练习1.( B ) 提示 AD 表示A 的第i 行与D 的第列j 相乘得到()j ij a λ. 2.(C )提示 0000==⇒=⇒=⇒=B A B A A 0AB 或B . 3.(D )提示 A 、、C 可逆,等式左乘以B 1−A ,右乘以A . 4.(A )提示 3311k k k −==A A .5.(D )提示 由于A 可逆⇔00≠⇔≠T A A ⇔TA 可逆.6., ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=15419102935121312410210413121AB ()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=1541910293511995103425TAB . 7.⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=−−−110100000310000112111A 00A A.8.,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000210012E A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000212100121E A . 9. , ,E B A AB 293−=−E A B AB 293−=−)333E E)(A (A E)B (A +−=−由于021*********≠=−−=−E A ,故E)A 3(−是可逆的,.⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=7000501043E)(A B 10.A B AB =− , ,B E)A(B =−04100002020≠=−=−E B ,E B −是可逆的,⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−=−200012102111000021021020********E)B(B A .11.()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=−=91461121321A B X .12.()()()21T A A E A E A E +−−−−81644()()()A E A)E (A E A E 1T−−−−=−4444()()A E A E T−−=44()24A E −=324182==.13.左乘以C ,,由于 E B)A C (T=−20110002100321043212≠==−B C ,故 是可逆的,(. B C −2()()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−=−−−1210012100120001222C 1T T1B)C (B)C (B)A 14.,即、互为逆矩阵, ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−=100131522153QP P Q ()()()()BQ QP QP B QP PB PBQ A nn L ==Q PB n =,由于,故.)(-L ,2,1,122===k k kBB E B⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−−==为奇数为偶数n n 1162011A E A n 15.(1)由于()1k AA E A)(E −+++−L )A A (A )AA (E n 21k +++−+++=−L LE A E n =−=, 故 ,1k 1A A E A)(E −−+++=−L (2)()111A)(E A))(E (E))(A (−−−−−=−−=−4144()1k A A E −+++−=L 41. 2.4.2提高练习 1.(D )提示:,若0E)A(A A A2=−⇔=A 可逆,则E A =,E A 2=.2.(C )提示:,⎟⎟⎠⎞⎜⎜⎝⎛++=+y a ax a a 2221121122B A 422221112221121122211211=⎟⎟⎠⎞⎜⎜⎝⎛+=++=+y a x a a a a a y a a x a a B A . 3.(A )提示:乘积AB 的第行是i A 的第行与的列的乘积. i B n ,,1L 4.(D )提示:()()()()()()1−−−−−−−===A C B AC B B AC ACB1T 111T 1T 1T .5.(C )提示:1**−==n nn k k k AA A .6.()()()9313133232333111*1−=×−=−=−=−=−−−−−AA A A A A A .7.()n n n n211*1*1*5151151)(515−−−−==⎟⎠⎞⎜⎝⎛==A AA A. 8.⎟⎟⎠⎞⎜⎜⎝⎛−==−θθθθcos sin sin cos 1*1A A A . 9.由于E CA BC AB ===,故 ,2A A(BC)A ABCA E ===2B B(CA)B BCAB E ===,,2C C(AB)C CABC E ===所以 .E CB A 2223=++10.()()11=====−3341*)B A (AB ABABAB AB AB .11.由于,,右乘以得BA A BA A 1+=−6A E)BA (A 16=−−1−A E E)B (A16=−−又可逆.故A)(E −16−−−=E)(A B1⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=6100031000216. 12.方程整理得B E)A)(B A(X =−−由于0≠A ,0≠−E B ,故A 、E B −是可逆的,且⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=−1001102111A ,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000101011E B 所以11E)B(B A A X −−−=− ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=200220522100010101200020102100110211故 . ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=300330613X 13.由于AB B A =+B AB A −=⇒()B E A A −=⇒(但是B 不一定可逆,不能同时右乘以1−B)()()B E A E E A −=+−⇒()()E E B E A =−−⇒,故 ()E)(B E A 1−=−−.14.由于0421102101≠==A , 故A 是可逆的, *A 是可逆的; 根据E A AA *=, 有 E )(A A **=−1方程左右两边同时左乘以A 得,AE )(A AA **=−1即 A A )(A *11=−, 故 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−2110210014111A A )(A *.。
第二章矩阵第一节矩阵的概念1、分类:行矩阵:只有一行的矩阵列矩阵:只有一列的矩阵零矩阵O:元素全为零的矩阵单位阵E:主对角线上元素为1,其他元素为0的方阵数量阵(纯量阵):λE对角阵:不在主对角线上的元素都为0的方阵上(下)三角阵:主对角线上以下(上)的元素全为0的方阵2、两矩阵同型:两个矩阵行数且列数都相等两矩阵相等:两矩阵同型,且对应元素相等。
记做A=B。
3、不同型的零矩阵是不相等的第二节矩阵的运算设A,B,C为m×n矩阵,λ, μ为数一、加法:只有同型矩阵才能进行加法运算(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+O=A二、减法:A-B=A+(-B) -B称为B的负矩阵三、乘法:1、只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(行矩阵)的行数时,两个矩阵才能相乘。
简记为:(m×s)(s×n)=(m×n)例: A为2×3矩阵,B为3×2矩阵,则AB=C为2×2矩阵2、数与矩阵:(1)(λμ)A=λ(μA)=μ(λA)(2)(λ+μ)A=λA+μA(3)λ(A+B)=λA+λ B(4)1*A=A, (-1)*A=-A矩阵与矩阵:(1)结合律:(AB)C=A(BC)(2)分配律:A(B+C)=AB+AC(B+C)A=BA+CA(3)λ(AB)=(λA)B=A(λB)(4)EA=AE=A(5)A k A l=A k+l(6)(A k)l=A kl3、矩阵乘法不满足交换律,即(AB)C≠(AC)B另外:(1)一般有AB≠BA (A与B可交换时,等式成立)(2)AB=O,不能推出A=O或B=O(3)AB=AC,A≠O,不能推出B=C(4)(AB)k≠A k B k(A与B可交换时,等式成立)4、可交换的:对于两个n阶方阵A,B,有AB=BA,则称A与B是可交换的。
纯量阵与任意同行方阵都是可交换的。
课题:矩阵教学目的:理解矩阵的概念,熟练掌握矩阵运算;理解矩阵的初等变换及作用;理解矩阵的秩和逆的概念,熟练掌握矩阵的秩和逆的求解教学重点:矩阵运算、秩和逆的求解教学难点:矩阵的乘法、秩和逆的概念教学时数:10教学设计:§1、§2 矩阵的概念与运算一、矩阵的概念1 矩阵的定义①定义6P def1②矩阵的行、列③行标、列标④元素(元)⑤主对角线、主对角元2 特殊矩阵①矩阵的行、列数目特殊行矩阵(只有一行的矩阵) def列矩阵(只有一列的矩阵) defn阶方阵(行数等于列数) def 注:1阶方阵②矩阵的元素特殊零矩阵 def负矩阵 def单位阵 def3 矩阵的同型 def4 矩阵的相等 def二、矩阵的运算1 矩阵的加、减法①定义9P②性质a)满足交换律与结合律b)A+(-A)=O A+O=Ac)A+(-B)=A-B (减法也可用此式定义)注:可加(减)的条件是两矩阵同型,结果也同型2 矩阵的数乘 ① 定义 10P ② 性质a) ()()A A αβαβ= b) ()A B A B ααα+=+ c) ()A A A αβαβ+=+3 矩阵的乘法 ① 定义 12P注意:可乘条件:左矩阵的列数等于右矩阵的行数 相乘结果:为左矩阵的行数右矩阵的列数 ② 乘法举例例1 设21123,13010A B -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦求AB 解:2112322613010153AB --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦例2 2115003,20141A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦求AB 解 21410115003603201416201AB ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦③ 性质a) 结合律 ()()A BC AB C = b) 左、右分配律 ()A B CAC BC +=+()A B C AB AC +=+c) 不满足交换律主要有以下三方面的原因1) 若AB 有意义,BA 未必有意义如 2223A B ⨯⨯有意义而2322B A ⨯⨯则没有意义 2) 即使AB 、BA 都有意义,也不一定同型 如322333A B C ⨯⨯⨯=, 233222B A C ⨯⨯⨯=3) 即使AB 、BA 都有意义且同型,也不一定相等如24241236A B -⎡⎤⎡⎤==⎢⎥⎢⎥---⎣⎦⎣⎦ 16320081600AB BA --⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦d) 乘法消去律不满足即当AB AC =一般说来没有B C = 如000110010000A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦虽有0000AB AC ⎡⎤==⎢⎥⎣⎦,但B C ≠ 以如512100603011A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦虽有1100ACBC ⎡⎤==⎢⎥⎣⎦,但A B ≠ ④ 方阵的幂对于方阵A 与自然数k ,称k nA A A A =⋅⋅⋅为方阵A 的k 次幂,具有性质: a) 1212k k k k A A A +=, b) 1212()k k k k A A =例3已知1101A ⎛⎫= ⎪⎝⎭,求nA ⑤矩阵的行列式 AB A B=⋅4 矩阵的转置 ① 定义 16P② 性质1) ()T TAA =2) ()T T T A B A B +=+3) ()()T T A A λλ= 4) ()TT T AB B A =作业:P100 2,4,5(2)(3)(6),10,14((1)(5),17(1),18§3、§4 特殊矩阵与分块矩阵一、 特殊矩阵 1 对角矩阵如果n 阶方阵()ij A a =中的元素满足:0(,1,2,)ij a i j i j n =≠= ,则称A 为对角矩阵。
授课章节第二章矩阵§2.1矩阵§2.2矩阵的运算目的要求理解矩阵的定义,掌握矩阵的运算重点矩阵的运算难点矩阵的乘法§2.1矩阵前面介绍了利用行列式求解线性方程组的方法,即Cramer法则。
但是Cramer法则有它的局限性:1. 系数行列式;2. 方程组中变量的个数等于方程的个数。
接下来要学习的还是关于解线性方程组,即Cramer法则无法用上的-――用“矩阵”的方法解线性方程组。
本节课主要学习矩阵的概念及其运算。
一、矩阵的概念矩阵是线性代数的核心,矩阵的概念、运算和理论贯穿线性代数的始终。
矩阵是一个表格,它的运算与数的运算是既有联系又有区别;矩阵与行列式也有很大的关联,但二者不能等同混淆。
对于分块矩阵,它在矩阵乘法、求逆、向量的线性表出、线性相关与秩、线性齐次方程组的解等方面,都有很大的用处。
矩阵是本课程的一个重要概念,在生产活动和日常生活中,我们常常用数表表示一些量或关系,如工厂中的产量统计表,市场上的价目表等等例1 某种物资有3个产地,4个销地,调配量如表1所示表 1 产地销地调配情况表销地产地B1 B2 B3 B4A1 1 6 3 5A2 3 1 2 0A3 4 0 1 2那么,表中的数据可以构成一个矩形数表:在预先约定行列意义的情况下,这样的简单矩形数表就能表明整个产销调配的状况。
不同的问题,矩形数表的行列规模有所不同,去掉表中数据的实际含义,我们得到如下矩阵的概念。
定义2.1 由个数排成的行列数表(2.1)称为一个行列矩阵,简称矩阵。
这个数称为矩阵的元素,其中称为矩阵的第行第列元素.(2.1)式也简记为或. 有时矩阵A也记作.注 1.元素是复数的矩阵称为复矩阵,元素是实数的矩阵称为实矩阵,本书中的矩阵除特别说明外,都指实矩阵.2.当时,称矩阵为长方阵(长得像长方形);3.当时,称矩阵为阶方阵(长得像正方形),简称方阵;4. 两个矩阵的行数、列数均相等时,就称它们是同型矩阵.如果与是同型矩阵,并且它们的对应元素相等,即则称矩阵A与矩阵B相等,记作A=B5.所有元素都为零的矩阵称为零矩阵,记为O. 值得注意的是:不同型的零矩阵是不相等的.例2设,,已知A=B,求.【解】因为,,,所以二、几种特殊矩阵(1)矩阵,当时,即称为n阶方阵,记为. 特别地,一阶方阵.方阵中从左上角元素到右下角元素的这条对角线称为方阵的主对角线,从右上角元素到左下角元素的这条对角线称为方阵的副对角线。
线性代数第⼆章矩阵试题及答案第⼆章矩阵⼀、知识点复习1、矩阵的定义由m?n个数排列成的⼀个m⾏n列的表格,两边界以圆括号或⽅括号,就成为⼀个m?n型矩阵。
例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8 是⼀个4?5矩阵.⼀个矩阵中的数称为它的元素,位于第i⾏第j列的数称为(i,j)位元素。
元素全为0的矩阵称为零矩阵,通常就记作0。
两个矩阵A和B相等(记作A=B),是指它的⾏数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。
2、n阶矩阵与⼏个特殊矩阵⾏数和列数相等的矩阵称为⽅阵,⾏列数都为n的矩阵也常常叫做n阶矩阵。
n阶矩阵的从左上⾓到右下⾓的对⾓线称为主对⾓线。
下⾯列出⼏类常⽤的n阶矩阵,它们都是考试⼤纲中要求掌握的.对⾓矩阵: 对⾓线外的的元素都为0的n阶矩阵.单位矩阵: 对⾓线上的的元素都为1的对⾓矩阵,记作E(或I).数量矩阵: 对⾓线上的的元素都等于⼀个常数c的对⾓矩阵,它就是c E.上三⾓矩阵: 对⾓线下的的元素都为0的n阶矩阵.下三⾓矩阵: 对⾓线上的的元素都为0的n阶矩阵.对称矩阵: 满⾜A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.反对称矩阵:满⾜A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对⾓线上的元素⼀定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。
(1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2A=1阶梯形矩阵:⼀个矩阵称为阶梯形矩阵,如果满⾜:①如果它有零⾏,则都出现在下⾯。
②如果它有⾮零⾏,则每个⾮零⾏的第⼀个⾮0元素所在的列号⾃上⽽下严格单调递增。
把阶梯形矩阵的每个⾮零⾏的第⼀个⾮0元素所在的位置称为台⾓。
每个矩阵都可以⽤初等⾏变换化为阶梯形矩阵,这种运算是在线性代数的各类计算题中频繁运⽤的基本运算,必须⼗分熟练。
线性代数第二章矩阵及其运算$1.矩阵定义1 由m*n个数a_{ij}(i=1,2,3...,n)排成的m行n列的数表称为m行n列矩阵,简称mn矩阵。
为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示,记作这mn个数称为矩阵A的元素,简称为元,数位于矩阵A的第i行第j列,称为矩阵A的(i,j)元。
以数. 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵,本书中的矩阵除特别说明者外,都指实矩阵。
行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
n阶矩阵A也记作An。
只有一行的矩阵 . 只有一列的矩阵称为列矩阵,又称列向量。
两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵。
如果那么就称矩阵A与矩阵B相等,记作 A=B 元素都为零的矩阵称为零矩阵,记作O。
注意不同型的零矩阵是不同的。
矩阵的应用非常广泛,下面仅举几例。
例1工厂三个商店发送四种产品的数量可列成矩阵其中这四种产品的单价及单件重量也可列成矩阵其中。
例2一般的,若干个点之间的单向通道都可以用这样的矩阵表示。
例3n个变量x_1,x_2,...,x_n与m个变量y_1,y_2,...,y_m之间的关系式表示一个从变量给定了线性变换(2),它的系数所构成的矩阵(称为系数矩阵)也就确定。
反之,如果给出一个矩阵作为线性变换的系数矩阵,则线性变换也就确定。
在这个意义上,线性变换和矩阵之间存在着一一对应的关系。
例如线性变换叫做恒等变换,它对应的一个n阶方阵叫做n阶单位矩阵,简称单位阵。
这个方阵的特点是:从左上角到右下角的直线(叫做(主)对角线上的元素都是1,其他元素都是0.即单位阵E的(i,j)元为)又如线性变换对应n阶方阵这个方阵的特点是:不在对角线上的元素都是0.这种方阵为对角矩阵,简称对角阵。
对角阵也记作$2.矩阵的运算一、矩阵的加法定义2 设有两个m*n矩阵A=(a_{ij})和B={b_{ij}},那么矩阵A和B的和记作A+B,规定为应该注意,只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。