线性代数第二章
- 格式:ppt
- 大小:2.36 MB
- 文档页数:58
第二部分矩阵本章概述矩阵是线性代数的重要内容,也是研究线性方程组和其它各章的主要工具。
主要讨论矩阵的各种运算的概念和性质。
在自学考试中,所占比例是各章之最。
按考试大纲的规定,第二章占26分左右。
而由于第三,四,五,六各章的讨论中都必须以矩阵作为主要工具,故加上试题中必须应用矩阵运算解决的题目的比例就要占到50分以上了。
以改版后的三次考试为例,看下表按考试大纲所占分数07.4 07.7 07.10 直接考矩阵这一章的26分左右31分34分38分加上其它章中必须用矩阵运算的所占分数51分53分67分由此矩阵这一章的重要性可见一般。
2.1 线性方程组和矩阵的定义2.1.1 线性方程组n元线性方程组的一般形式为特别若,称这样的方程组为齐次方程组。
称数表为该线性方程组的系数矩阵;称数表为该线性方程组的增广矩阵。
事实上,给定了线性方程组,就惟一地确定了它的增广矩阵;反过来,只要给定一个m×(n+1)阶矩阵,就能惟一地确定一个以它为增广矩阵的n个未知数,m个方程的线性方程组。
例1 写出下面线性方程组的系数矩阵和增广矩阵【答疑编号12020101】例2 写出以下面矩阵为增广矩阵的线性方程组【答疑编号12020102】2.1.2 矩阵的概念一、矩阵的定义定义2.1.1 我们称由mn个数排成的m行n列的数表为m×n阶矩阵,也可记为为矩阵A第i行,第j列的元素。
注意:矩阵和行列式的区别。
二、几类特殊的矩阵1.所有元素都为零的矩阵称为零矩阵,记为O。
例如都是零矩阵。
2.若A的行数m=1,则称为行矩阵,也称为n维行向量。
若A的列数n=1,则称为列矩阵,也称为m维列向量。
3.若矩阵A的行数=列数=n,则称矩阵A为n阶方阵,或简称A为n阶阵。
如n个未知数,n个方程的线性方程组的系数矩阵。
4.称n阶方阵为n阶对角阵。
特别若上述对角阵中,,称矩阵为数量矩阵,如果其中λ=1,上述数量阵为,称为n阶单位阵。
5.上(下)三角阵称形如的矩阵为上(下)三角矩阵。
线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==L L 排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a LL M M M L称为m 行n 列矩阵。
简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭L L L L L L L,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。
说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。
扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。
记作:A n 。
行(列)矩阵:只有一行(列)的矩阵。
也称行(列)向量。
同型矩阵:两矩阵的行数相等,列数也相等。
相等矩阵:AB 同型,且对应元素相等。
记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。
单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。
第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++ ⎪+=⎪⎪+++⎝⎭L L L L L LL说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。
(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭L L L L L L L设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。