北师大版数学七年级下册:《2.4 用尺规作角》习题
- 格式:doc
- 大小:41.00 KB
- 文档页数:2
《用尺规作角》习题一、选择题1.下列关于作图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行2.下列属于尺规作图的是()A.用刻度尺和圆规作△ABC B.用量角器画一个300的角C.用圆规画半径2cm的圆 D.作一条线段等于已知线段3.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器 D.没有刻度的直尺和圆规4.下列作图语句正确的是()A.以点O为顶点作∠AOB B.延长线段AB到C,使AC=BC C.作∠AOB,使∠AOB=∠αD.以A为圆心作弧5.图中的尺规作图是作()A.线段的垂直平分线 B.一条线段等于已知线段C.一个角等于已知角 D.角的平分线6.下列作图语句正确的是()A.作射线AB,使AB=a B.作∠AOB=∠aC.延长直线AB到点C,使AC=BC D.以点O为圆心作弧7.下列叙述中,正确的是()A.以点O为圆心,以任意长为半径画弧,交线段OA于点B B.以∠AOB的边OB为一边作∠BOCC.以点O为圆心画弧,交射线OA于点BD.在线段AB的延长线上截取线段BC=AB8.下列尺规作图的语句错误的是()A.作∠AOB,使∠AOB=3∠αB.作线段AB,使线段AB=aC.以点O为圆心画弧 D.作∠ABC,使∠ABC=∠α+∠β9.下列属于尺规作图的是()A.用量角器画∠AOB的平分线OPB.利用两块三角板画15°的角C.用刻度尺测量后画线段AB=10cmD.在射线OP上截取OA=AB=BC=a10.下列关于作图的语句正确的是()A.作∠AOB的平分线OE=3 cmB.画直线AB=线段CDC.用直尺作三角形的高是尺规作图D.已知A、B、C三点,过这三点不一定能画出一条直线11.下列作图属于尺规作图的是()A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线L的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α12.下列尺规作图的语句错误的是()A.作∠AOB,使∠AOB=3∠αB.以点O为圆心作弧C.以点A为圆心,线段a的长为半径作弧D.作∠ABC,使∠ABC=∠α+∠β二、填空题13.作图题的书写步骤是、、,而且要画出和,保留.14.下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:.15.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有.(填序号即可)参考答案一、选择题1.答案:D解析:【解答】A、直线没有长度,故A选项错误;B、射线没有长度,故B选项错误;C、三点有可能在一条直线上,可画出一条直线,也可能不在一条直线上,此时可画出三条直线,故选项错误;D、正确.故选:D.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.2.答案:D解析:【解答】A、用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;B、量角器不在尺规作图的工具里,错误;C、画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D、正确.故选:D.【分析】根据尺规作图的定义分别分析得出即可.3.答案:D解析:【解答】尺规作图的画图工具是没有刻度的直尺和圆规.故选D.【分析】根据尺规作图的定义可知.4.答案:C解析:【解答】A、画角既需要顶点,还需要角度的大小,错误;B、延长线段AB到C,则AC>BC,即AC=BC不可能,错误;C、作一个角等于已知角是常见的尺规作图,正确;D、画弧既需要圆心,还需要半径,缺少半径长,错误.故选C.【分析】根据画角的条件判断A;根据线段延长线的等腰判断B;根据基本作图判断C;根据确定弧的条件判断D.5.答案:A解析:【解答】根据图象是一条线段,它是以线段的两端点为圆心,作弧,进而作出垂直平分线,故做的是:线段的垂直平分线,故选:A.【分析】根据图象以及做线段垂直平分线的作法,即可得出答案.6.答案:B解析:【解答】A、射线是不可度量的,故选项错误;B、正确;C、直线是向两方无线延伸的,故选项错误;D、需要说明半径的长,故选项错误.故选B.【分析】根据射线、直线的延伸性以及确定弧的条件即可作出判断.7.答案:D解析:【解答】A、以点O为圆心,以任意长为半径画弧,交线段OA于点B,任意长为半径,不一定与线段AO相交,故此选项错误;B、以∠AOB的边OB为一边作∠BOC,∠BOC的度数不确定,故此选项错误;C、以点O为圆心画弧,交射线OA于点B,没有半径长,故此选项错误;D、在线段AB的延长线上截取线段BC=AB,正确.故选:D.【分析】分别利用尺规作图的定义,结合能否画出图形进而分析得出即可.8.答案:C解析:【解答】A、作一个角等于已知角的倍数是常见的尺规作图,语句正确;B、作一条线段等于已知线段是常见的尺规作图,语句正确;C、画弧既需要圆心,还需要半径,缺少半径长,这样的弧可以画出无数条,语句错误;D、作一个角等于两个已知角的和是基本作图,语句正确.故选C.【分析】分别利用尺规作图的定义,结合能否画出图形进而分析得出即可.9.答案:D解析:【解答】根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,故选:D.【分析】根据尺规作图的定义:是指用没有刻度的直尺和圆规作图可直接选出答案.10.答案:D解析:【解答】A、作∠AOB的平分线OE=3 cm,角平分线是射线,故此选项错误;B、画直线AB=线段CD,直线没有长度,故此选项错误;C、用直尺作三角形的高是尺规作图,尺规应有圆规,故此选项错误;D、已知A、B、C三点,过这三点不一定能画出一条直线,此选项正确;故选:D.【分析】射线、直线具有延伸性,不能画出其长度;尺规作图需用圆规和无刻度的直尺;若A、B、C三点不共线,则无法过这三点画出一条直线,即A、B、C错误,D项正确.11.答案:D解析:【解答】A、画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;B、用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;C、用三角尺作过点A垂直于直线L的直线,三角尺也不在作图工具里,错误;D、正确.故选D.【分析】根据尺规作图的定义可知.12.答案:B解析:【解答】A、作一个角等于已知角的倍数是常见的尺规作图,正确;B、画弧既需要圆心,还需要半径,缺少半径长,错误.C、以点A为圆心,线段a的长为半径作弧,正确;D、作∠ABC,使∠ABC=∠α+∠β,正确故选B.【分析】根据基本作图的方法,逐项分析,从而得出结论.二、填空题13.答案:已知、求作、作法,图形,结论,作图痕迹.解析:【解答】作图题的书写步骤是已知、求作、作法,而且要画出图形和结论,保留作图痕迹.【分析】根据作图题的书写步骤和尺规作图的要求作答.14.答案:(3),(2),(1).解析:【解答】①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).【分析】图(1)为过点O有两条射线OC、OD,一条直线AB;图(2)为以直线AB上一点O 为顶点,在直线AB的同侧画∠AOC和∠BOD,图(3)为过点O的三条直线AB、OC、OD与另一条直线分别相交于点B、C、D三点.根据语句及图形特征进行选择.15.答案:③⑤.解析:【解答】①以O为圆心作弧可以画出无数条弧,因为半径不固定,所以叙述错误;②射线AB是由A向B向无限延伸,所以叙述错误;③根据作一个角等于已知角的作法,可以作一个角∠AOB,使∠AOB等于已知∠1,所以叙述正确;④直线可以向两方无限延伸,所以叙述错误;⑤根据平行公理:过直线外一点有且只有一条直线与已知直线平行,可以过三角形ABC的顶点C作它的对边AB的平行线,所以叙述正确.所以正确的有③⑤.【分析】①根据确定圆的两个条件:圆心和半径判断即可;②根据射线的性质判断即可;③根据基本作图:作一个角等于已知角判断即可;④根据直线的性质判断即可;⑤根据平行公理判断即可.。
《用尺规作角》典型例题例1 如图,已知AOB ∠,求作AOB B O A ∠='''∠.例2 如图,已知B O A AOB '''∠∠、,求作B O A AOB B O A '''∠+∠=''''''∠.例3 已知,如图,锐角AOB ∠,求作:β∠,使得AOB ∠-︒=∠2180β例4 任意画一个三角形,然后用尺规作它的3个内角的和,并且用量角器度量3个内角的和为多少.参考答案例1 分析:要作AOB B O A ∠='''∠,可以先作A O '',在此基础上我们再来确定B O ''的位置.作法:(1)作射线A O ''.(2)以O 为圆心,以任意长为半径画弧交OA 于D ,OB 于E .(3)以O '为圆心,以OE 为半径画弧交A O ''于D .(4)以D '为圆心,以DE 为半径画弧和前弧交于E '点.(5)过E '作射线B O '',则B O A '''∠就是所要求的角.说明:在进行第2步时,以“任意长为半径”,要注意这个“任意”要适当,否则就都会给作图带来不必要的麻烦.例 2 分析:我们可以先作出一个角等于AOB ∠,再在这个角的外边,以这个角的一边为边作一个角等B O A '''∠,这就作出了这两个角的和,这个过程可以简化成如下过程.作法:(1)作射A O ''''.(2)以O 为圆心任意长为半径画弧交OA 于E ,OB 于F ;再以O '为圆心同样长为半径画弧交A O ''于E ',B O ''于F '.(3)以O ''为圆心,以OE 为半径画弧交A O ''''于E ''.(4)以E ''为圆心,以EF 为半径画弧,于前弧交于D 点;再以D 点为圆心,以F E ''为半径画弧,交E ''、D 所同在的弧为F ''点.(5)作射线F O '''',则B O A ''''''∠就是所求的角.说明:中间连结D O ''这一步直接省略即可.例3 分析:首先作出AOB ∠2,再求AOB ∠2的补角即是所求的角.作法:1.作AOB B O A ∠='''∠,2.以B O ''为始边作AOB C O B ∠='''∠3.反向延长射线A O ''到D '.β∠为图中所示的D O C '''∠例4 分析:首先根据题目叙述写出已知、求作,然后再作图. 解:已知:如图,已知三角形ABC .求作:DOG ∠,使C B A DOG ∠+∠+∠=∠.作法:(1)作A DOE ∠=∠;(2)以OE 为一边,在A DOE ∠=∠的外部作B EOF ∠=∠;(3)以OF 为一边,在EOF ∠的外部作C GOF ∠=∠. DOG ∠就是所求作的角(如图).用量角器量得︒=∠180DOG .。
2.4 用尺规作角●教学目标(一)教学知识点1.会用尺规作一个角等于已知角.2.利用尺规作一个角等于已知角的应用.(二)能力训练要求会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用.(三)情感与价值观要求通过作图,进一步激发学生的学习兴趣,体验数学在生活中的应用.●教学重点用尺规作一个角等于已知角.●教学难点理解画图的语言,能根据几何语言画出图形.●教学方法讲练结合法●教具准备师:直尺、圆规.投影片一张第一张:引例(记作投影片§2.4 A)生:直尺、圆规、量角器●教学过程Ⅰ.创设现实情景,引入新课[师]在上节课我们学习了用直尺和圆规作图,并且引入了规范的尺规作图语言.从而能够用几何语言描述作一条线段等于已知线段.那么如何用尺规作一条线段等于已知线段呢?[生]已知线段a,求作:线段AB,使AB=a.作法:(1)作射线AC.(2)以点A为圆心,以a的长为半径画弧,交AC于点B.则,AB就是所求的线段.图2-64[师]很好.同学们已掌握了一些尺规作图的语言.下面大家看一实例,你能解决它吗?(出示投影片§2.4 A)如图2-65,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.(1)请过C点画出与AB平行的另一条边.(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?图2-65[师]大家讨论讨论.[生甲]要在长方形木板上截一个平行四边形,按上图的方式(平行四边形的一组对边在长方形木板的边缘上).只要保证过点C作出与AB平行的另一条线段即可.所以我用一个三角板的一边与AB重合,用直尺紧靠三角板的另一边,然后移动三角板,使与AB重合的那边过点C,这样过C点画线段CD,则CD 就是所求的与AB平行的另一边.如图2-66.图2-66[生乙]只有一个圆规和一把没有刻度的直尺,现在还不能解决这个问题.[生丙]过直线外一点作这条直线的平行线的原理是:同位角相等,两直线平行.所以,能不能过点C作一个角等于∠BAC,且使这两个角是同位角呢?[师]同学们讨论得很好,尤其是丙同学提出的问题:作一个角等于已知角.这节课,我们就来利用尺规作一个角等于已知角.Ⅱ.讲授新课[师]用尺规作图,它的步骤有哪些呢?[生]已知、求作、分析、作法.[师]好,那我们现在先来写已知、求作.[师生共析]已知:∠AOB,求作:∠A′O′B′,使∠A′O′B′=∠AOB.图2-67[师]这个∠A′O′B′如何就能作出呢?它的道理是什么呢?这将在第五章中谈到.现在我们只需按下列作法步骤去画即可.下面老师在黑板上画、叙述,同学们在下面用尺规作∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.图2-68[师]同学们作好了没有?[生齐声]好了.[师]那你所作的角一定等于已知角吗?……[师]大家来比较一下.[生甲]我用量角器量了量所作的角与已知角,可以知道这两个角相等.[生乙]我把所作的角与已知角重叠,看到这两个角的终边与始边重合,说明所作的角与已知角相等.[师]很好.这样我们就会用尺规作一个角等于已知角.下面我们两人一组,再作一个角等于已知角,一人叙述作法,一人根据作图.……[师]大家基本掌握了用尺规作一个角等于已知角.接下来我们通过练习进一步熟悉掌握这内容.Ⅲ.课堂练习(一)课本随堂练习1.已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.图2-69 图2-70作法:(1)以O为圆心,以任意长为半径画弧,与OA交于点A′,与OB交于点C.(2)以点C为圆心,以A′C长为半径画弧,交前弧于点B′.(3)过点B′作射线OB′,则∠A′OB′就是所求作的角.或者:作法:(1)作射线O′A′.(2)以O点为圆心,以任意长为半径画弧交OA于点C,交OB于点D.图2-71 图2-72(3)以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于C ′点.(4)以点C ′为圆心,以CD 长为半径画弧,交前弧于E 点.(5)以点E 为圆心,以CD 长为半径画弧,交于点B ′.(6)过点B ′作射线OB ′.则∠A ′O ′B ′就是所求作的角.2.利用尺规完成本节课开始时提出的问题.作法:(略),图如下图2-73(二)看书 “读一读”.Ⅳ.课时小结本节课我们主要学习了用尺规作一个角等于已知角.要会用自己的语言来书写作法,并要了解作一个角等于已知角在尺规作图中的简单应用.Ⅴ.课后作业(一)课本P 57习题2.7 1.(二)复习本章的全部内容,并作一小结.Ⅵ.活动与探究1.利用尺规设计一些美丽的图案.[过程]通过这个活动,一方面使学生进一步掌握尺规作图的方法,另一方面也可培养学生的动手、动脑能力,激发他们的创造力,增进其对数学的理解.[结果]结果是许多学生设计出好多的美丽图案.C ′E●板书设计§2.4 用尺规作角一、做一做:作一个角等于已知角已知求作作法二、课堂练习三、读一读四、课时小结五、课后作业。
用尺规作角课后作业一、选择题1、尺规的作图是指()A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具2、下列关于作图的语句中正确的是()A. 画直线AB=10厘米B. 画射线OB=10厘米C. 已知A,B,C三点,过这三点画一条直线D. 过直线AB外一点画一条直线和直线AB平行3、如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线平行D. 两直线平行,同位角相等4、如图,用尺规作出∠OBF=∠AOB,作图痕迹⌒MN是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆5、如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,⌒FG是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧二、填空题6、如图,已知方格纸中的每个小方格都是相同的正方形.∠ACB画在方格纸上,请在小方格的顶点上标出一个点P,使点P落在∠ACB的平分线上..7、如图所示,已知∠AOB,求作射线OC,使OC平分∠AOB,作法的合理顺序是.(将①②③重新排列)①作射线OC;②以O为圆心,任意长为半径画弧交OA、OB于D、E;③分别以D、E为圆心,大于12DE的长为半径作弧,在∠AOB内,两弧交于点C.8、画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD= AB.9、已知∠AOB,点P在O A上,请以P为顶点,PA为一边作∠APC=∠O(不写作法,但必须保留作图痕迹)问:PC与OB一定平行吗?答:.10、如图已知∠AOB内有两点,M、N求作一点P,使点P在∠AOB两边距离相等,且到点M、N的距离也相等,保留作图痕迹并完成填空.解:(1)连接;作垂直平分线CD;(2)作∠AOB的OE与CD交于点,所以点就是要找的点.三、解答题11、如图,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?(2)过点M画AB的平行线.(3)过点N画GH的平行线.12、如图,已知∠α,∠β,用直尺和圆规求作一个∠γ,使得∠γ=∠α-12∠β.(只须作出正确图形,保留作图痕迹,不必写出作法)参考答案1.解析:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.2.解析:A、直线没有长度,错误;B、射线没有长度,错误;C、三点有可能在一条直线上,可画出一条直线,也可能不在一条直线上,此时可画出三条直线,错误;D、正确.故选D.3.解析:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.4.解析:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;③以点E为圆心,以CD为半径画圆,交⌒EF于点N,连接B N即可得出∠OBF,则∠OBF=∠AOB.故选D.5.解析:根据题意,所作出的是∠BCN=∠AOB,根据作一个角等于已知角的作法,⌒FG是以点E为圆心,DM为半径的弧.故选D.6.解析:作法:7.解析:作法:(1)以O为圆心,任意长为半径画弧交OA、OB于D、E;(2)分别以D、E为圆心,大于12DE的长为半径作弧,在∠AOB内,两弧交于点C,(3)作射线OC,所以OC就是所求作的∠AOB的平分线.故题中的作法应重新排列为:②③①.故答案为:②③①.8.解析:(1)画线段AB;(2)延长线段AB到点C,使BC=2AB;(3)反向延长AB到点D,使AD=AC;由图可知,BC=2AB,AD=AC=3AB,故CD=6AB.9.解析:作图如下:PC与OB一定平行.故答案是:平行.10.解析:如图,故答案为:(1)MN,MN,(2)角平分线,P,P.11.解析:(1)由图形可得:AB∥CD.(2)(3)所画图形如下:12.解析:作图如下,∠BCD即为所求作的∠γ.。
《2.4 用尺规作角》习题
1. 已知底边及一腰,求作等腰三角形.
2.已知:线段a,b,求作ΔABC,使∠BAC=90°,BC=a,AC=b.
3.如图,已知在ΔABC中,∠A=90°,请用圆规和直尺作⊙P,使圆心P在AC上,且与AB、BC两边都相切.
4.用圆规、直尺(三角尺)作图,不写作法,但要保留作图痕迹.如图,AB、CD是两条互相垂直的公路,设计时想在拐弯处用一段圆弧形弯道把它们连接起来(圆弧在A、C两点处分别与道路相切),测得AC=60米,∠ACP=45°.
(1)在图中画出圆弧形弯道的示意图;
(2)求弯道部分的长.(结果保留两个有效数字).
5. 如图,ΔABC是某村若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.
第一种分法:第二种分法:
A A
B C B C
6.如图,某汽车探险队要从A城穿越沙漠去B城,途中需要到河流L边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.。
七年级数学下册第二章《尺规作图》专项练习班级:_________________ 姓名:_________________ 座号:________________ 评分:一. 选择题 (共10小题,答案写在表格内,否则答案无效)A .刻度尺和圆规B .不带刻度的直尺和圆规C .刻度尺D .圆规2.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN 是( ).A .以点B 为圆心,OD 为半径的圆 B .以点B 为圆心,DC 为半径的圆 C .以点E 为圆心,OD 为半径的圆D .以点E 为圆心,DC 为半径的圆3.我们利用尺规作图可以作一个角()''A O B ∠等于已知角()AOB ∠,如下所示:(1)作射线OA ;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O '为圆心,OC 为半径作弧,交OA '于'C ; (4)以C '为圆心,OC 为半径作弧,交前面的弧于D ; (5)连接'O D '作射线,O B ''则A O B '''∠就是所求作的角. 以上作法中,错误的一步是( ) A .()2B .()3C .()4D .()54.下面出示的的尺规作图题,题中符号代表的内容正确的是( ) 如图,已知∠AOB ,求作:∠DEF ,使∠DEF =∠AOB作法:(1)以①为圆心,任意长为半径画弧,分别交OA 、OB 于点P 、Q ; (2)作射线EG ,并以点E 为圆心②长为半径画弧交EG 于点D ; (3)以点D 为圆心③长为半径画弧交(2)步中所画弧于点F ; (4)作④,∠DEF 即为所求作的角.A .①表示点EB .②表示PQC .③表示OQD .④表示射线EF5.用直尺和圆规作∠HDG=∠AOB 的过程中,弧②是( )A .以D 为圆心,以DN 为半径画弧B .以M 为圆心,以DN 长为半径画弧C .以M 为圆心,以EF 为半径画弧D .以D 为圆心,以EF 长为半径画弧6.如图,是用直尺和圆规作一个角等于己知角的方法,即作'''A O B AOB ∠=∠.这种作法依据的是( )A .SSSB .SASC .AASD .ASA7.用直尺和圆规作∠HDG =∠AOB 的过程,弧①是( )A .以D 为圆心,以DN 为半径画弧B .以D 为圆心,以EF 为半径画弧C .以M 为圆心,以DN 为半径画弧D .以M 为圆心,以EF 为半径画弧8.下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容:如图,已知AOB ∠,求作:DEF ∠,使DEF AOB ∠=∠.作法:(1)以为圆心,任意长为半径画弧,分别交OA 、OB 于点P 、Q ;(2)作射线EG ,并以点E 为圆心,长为半径画弧交EG 于点D ;(3)以点D 为圆心,长为半径画弧交(2)步中所画弧于点F ;(4)作,DEF ∠即为所求作的角.A .表示点EB .表示PQC .表示OQD .表示射线EF9.如图,点C 在AOB ∠的OB 边上,用尺规作出了BCD AOB ∠=∠.以下是排乱的作图过程:①以C 为圆心,OE 长为半径画MN ,交OB 于点M . ②作射线CD ,则BCD AOB ∠=∠.③以M 为圆心,EF 长为半径画弧,交MN 于点D .④以O 为圆心,任意长为半径画EF ,分别交OA ,OB 于点E ,F .则正确的作图顺序是( )A .①—②—③—④B .③—②—④—①C .④—①—③—②D .④—③—①—② 10.在△ABC 中,AB=AC ,∠A=80°,进行如下操作:①以点B 为圆心,以小于AB 长为半径作弧,分别交BA 、BC 于点E 、F ; ②分别以E 、F 为圆心,以大于12EF 长为半径作弧,两弧交于点M ;③作射线BM 交AC 于点D , 则∠BDC 的度数为( ).A .100°B .65°C .75°D .105°二.填空题(共7小题)11.在几何里,把只用_________和_________画图的方法称为尺规作图. 12.已知1∠和2∠,画一个角使它等于12∠+∠,画法如下: (1)画AOB ∠=______________.(2)以点O 为顶点,OB 为始边,在AOB ∠的__________作2BOC ∠=∠;则12AOC ∠=∠+∠.13.如图,∠CAD 为△ABC 的外角,按以下步骤作图:①以点B 为圆心,以适当长为半径画弧,交BA 于点M ,交BC 于点N ; ②以点A 为圆心,以BM 长为半径画弧,交AD 于点P ; ③以点P 为圆心,以MN 长为半径画弧,交前一条弧于点Q ; ④经过点Q 画射线AE ,若∠C=50°,则∠EAC 的大小是_____度.14.下列作图中:①用量角器画出90AOB ∠=︒;②作AOB ∠,使2AOB α∠=∠;③连接AB ;④用直尺和三角板作AB 的平行线CD ,属于尺规作图的是__________.(填序号)15.已知∠α和线段m ,n ,求作△ABC ,使BC =m ,AB =n ,∠ABC =∠α,作法的合理顺序为________.(填序号即可)①在射线BD 上截取线段BA =n ;②作一条线段BC =m ;③以B 为顶点,以BC 为一边,作∠DBC =∠α;④连接AC ,△ABC 就是所求作的三角形.16.如图,CAD ∠为ABC ∆的外角,按以下步骤作图:①以点B 为圆心,以适当长为半径画弧,交BA 于点M ,交BC 于点N ;②以点A 为圆心,以BM 长为半径画弧,交AD 于点P ;③以点P 为圆心,以MN 长为半径画弧,交前一条弧于点Q ;④经过点Q 画射线AE .若50C ∠=︒,则EAC ∠的大小是__________度.17.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径.画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ; ③作射线AG ,交BC 边于点D ,则∠ADC 的度数为_____.三.解答题18.如图,在△ABC 中,BD 是边AC 上的高.请用尺规作图法,在BD 上求作一点E ,使得∠CED +∠ABD =90°.(保留作图痕迹,不写作法)19.已知:线段c 和αβ∠∠,求作:ABC ,使得AB c A B αβ=∠=∠∠=∠,,(不写作法,但保留作图痕迹)20.已知线段a 及锐角α,用直尺和圆规作ABC ,使B α∠=∠,AB BC a ==.21.尺规作图:已知α∠,β∠,求一个角∠AOB ,使∠AOB =α∠+β∠.(保留作图痕迹)22.如图,已知三角形ABC 和射线EM ,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)在射线EM 的上方,作NEM B ∠=∠;(2)在射线EN 上作线段DE ,在射线EM 上作线段EF ,使得DE AB =,EF BC =;(3)连接DF ,观察并猜想:DF 与AC 的数量关系是DF ______AC ,填(“>”、“<”或“=”) 23.按要求作图(1)如图,已知线段,a b ,用尺规做一条线段,使它等于+a b (不要求写作法,只保留作图痕迹)(2)已知:∠α,求作∠AOB=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹)24.如图,已知ABC 中,AB AC =,点P 在BC 上.(1)试用直尺和圆规在AC 上找一点D ,使CPD BAP ∠=∠(不写作法,但需保留作图痕迹);(2)在(1)的条件下,若2APC ABC ∠=∠;求证://PD AB .25.(1)如图,在直线MN 的异侧有A 、B 两点,按要求画图,并注明画图的依据. 请在图1中直线MN 上画一点D ,使线段AD +BD 最短.依据是 . (2)如图2,已知∠AOB,用圆规和没有刻度的直尺求作∠A'O'B',使∠A'O'B'=∠AOB26.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使∠ADE =∠ABC ,(保留作图痕迹,不写做法)27.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)28.尺规作图(1)如图所示,已知线段AB ,∠α,∠β,用尺规作一个△ABC,使它的两个角分别为∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹,图作在空白处)(2)已知:点P 为∠CAB 边上的一点,求作:直线PQ ,使得PQ∥AB29.如图,已知AOB ∠和射线O A ''.(1) 请用尺规作图法,在射线O A ''上作A O B '''∠,使得A O B AOB '''∠=∠; (不要求写作法,保留作图痕迹).(2) 若40AOB ︒∠=,求AOB ∠的余角和补角.30.如图,已知点P 为∠AOB 一边OB 上的一点.(1)请利用尺规在∠AOB 内部作∠BPQ ,使∠BPQ =∠AOB ;(不写作法,保留作图痕迹)(2)根据上面的作图,判断PQ 与OA 是否平行?若平行,请说明理由.31.如图,在△ABC 中,∠C >∠B.(1)请用尺规过点C 作一条射线,与边AB 交于点D ,使△ACD ∽△ABC (保留作图痕迹,不写作法);(2)已知AB =6,AC =4,求AD 的长. 32.作图与计算(1)已知:AOB α∠∠,.求作:在图2中,以OA 为一边,在∠AOB 的内部作.∠AOC =α∠(要求:直尺和圆规作图,不写作法,保留图痕迹.)(2)过点O 分别引射线OA 、OB 、OC ,且∠AOB =65°,∠BOC =30°,求∠AOC 的度数.33.如图,一块大的三角板ABC ,D 是AB 上一点,现要求过点D 割出一块小的三角板ADE ,使∠ADE=∠ABC,(1)尺规作出∠ADE.(不写作法,保留作图痕迹,要写结论) (2)判断BC 与DE 是否平行,如果是,请证明.34.如图,点D 在ABC △的AB 边上,且ACD A ∠=∠. (1)作BDC ∠的平分线DE ,交BC 于点E (用量角器画).(2)在(1)的条件下,BDC ACD A ∠=∠+∠,判断直线DE 与直线AC 的位置关系.35.如图,已知△ABC,(1)作图:试过点C 作直线CD∥AB,(用尺规作图法,保留作图痕迹,不要求写作法); (2)请你写出(1)的作图依据: .参考答案一. 选择题(每小题3分,共10小题)二.填空题(每小题4分,共7小题)11. 没有刻度的直尺圆规12. ∠1, 外部13. 50 14. ②③15. ②③①④ 16. 50 17. 65°三.解答题(共8小题)18.解:如图,点E为所求.19. 解:△ABC为所求作.20. 解:如图所示:△ABC即为所作.21. 解:如图,AOB ∠即为所作.22. 解:(1)如图所示:作法:①以点B 为圆心任意长为半径画圆弧,交AB ,BC 于点G ,H ②再以点E 为圆心以①中的半径画圆弧,交EM 于点P③再以点P 为圆心GH 长为半径画圆弧,与②所画的圆弧交于点N ,连接EN 即可 (2)如图所示:作法:①用圆规取BC 的长度,以点E 为圆心BC 长为半径画弧,交EM 于点F ,则EF=BC ②用圆规取AB 的长度,以点E 为圆心AB 长为半径画弧,交EN 的延长线于点D ,则DE=AB(3)根据EF=BC ,DE=AB ,B NEM ∠=∠可证ABC EDF △≌△,则DF=AC23. 解:(1)作射线CF ,在射线上顺次截取CD=a ,DE=b ,如下图所示,线段CE 即为所求:(2)首先作射线OA ,如下图所示,∠AOB 即为所求:24. 解:解:(1)如图所示.(2)∵2APC APD DPC ABC BAP ABC ∠=∠+∠=∠+∠=∠∴BAP ABC ∠=∠∵BAP CPD ∠=∠∴CPD ABC ∠=∠∴//PD AB .25. 解:(1)D 点为线段AB 与直线MN 的交点,如图.依据为两点之间线段最短.(2)①作任意一射线O A '',如图2;②以O 点为圆心,任意长度为半径作弧交OA 、OB 于点M 、N ,如图1;③以O '点为圆心,同样的长度为半径作弧交O A ''于点M ',如图2;④以点M '为圆心,MN 为半径作弧交③的弧于点N ',如图2;⑤连接O N ''并延长至B ',如图2,则A O B '''∠即为所求的角.26. 解:解:如图所示:通过这个方法作图,可以证明()BGF DAH SSS ≅,就可以得到ADE ABC =∠∠.27. 解:作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠,如下图所示,∠AOB 即为所求.28. 解:(1)如图所示:;(2)如图所示:.29. 解:(1)所作图形如答图2所示,A O B '''∠即为所求.(2) 当40AOB ∠=︒时,AOB ∠的余角=904050︒-︒=︒.AOB ∠的补角18040140=-=︒︒︒.30. 解:(1)如图所示: ;(2)BPQ AOB ∠=∠,//PQ OA ∴(同位角相等,两直线平行).31. 解:(1)如图,CM 即为所求作的射线;(2)在△ABC和△ACD中,∵∠ACD=∠B,∠A=∠A,∴△ABC∽△ACD,∴AB AC AC AD=,∴224863ACADAB===.32. 解:(1)如图所示:∠AOC就是所求的角.(2)分两种情况讨论:①当OC在∠AOB内部时,如图1,∠AOC=∠AOB-∠BOC=65°-30°=35°;②当OC在∠AOB外部时,如图2,∠AOC=∠AOB+∠BOC=65°+30°=95°.33. 解:(1)如图,∠ADE为所作;(2)BC∥DE.理由如下:∵∠ADE=∠ABC,∴BC∥DE.34. 解:(1)如图:(2)DE∥AC,理由:∵∠BDC=∠A+∠DCA,∠A=∠DCA,∴∠BDC=2∠DCA,∵DE平分∠BDC,∴∠BDC=2∠EDC,∴∠EDC=∠DCA,∴DE∥AC.35. 解:(1)(2)同位角相等,两直线平行.。
2.4 用尺规作图同步测试一、单选题(共10题;共20分)1.如图所示的尺规作图的痕迹表示的是()A. 尺规作线段的垂直平分线B. 尺规作一条线段等于已知线段C. 尺规作一个角等于已知角D. 尺规作角的平分线2.下列尺规作图的语句正确的是()A. 延长射线AB到DB. 以点D为圆心,任意长为半径画弧C. 作直线AB=3cmD. 延长线段AB至C,使AC=BC3.已知三边作三角形,用到的基本作图是()A. 作一个角等于已知角 B.平分一个已知角C. 在射线上截取一线段等于已知线段D. 作一条直线的垂线4.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A. 3cmB. 7cmC. 3cm或7cm D. 5cm或2cm5.用直尺和圆规作线段的垂直平分线,下列作法正确的是()A. B. C.D.6.作已知角的平分线是根据三角形的全等判定()作的.A. AASB. ASAC. SASD. SSS7.作一个角等于已知角用到下面选项的哪个基本事实()A. SSSB. SASC. ASAD. AAS8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A. 以点E为圆心,线段AP为半径的弧B. 以点E为圆心,线段QP为半径的弧C. 以点G为圆心,线段AP为半径的弧D. 以点G为圆心,线段QP为半径的弧9.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于EF长为半径作弧,两弧交于点M;③作射线BM交AC于点D,则∠BDC的度数为()A. 100°B. 65°C. 75°D. 105°10.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法错误的是()A. ∠BAD=∠CADB. 点D到AB边的距离就等于线段CD的长C. S△ABD=S△ACDD. AD垂直平分MN二、填空题(共5题;共5分)11.如图,已知线段AB,分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,连接AC,BC,BD,CD.其中AB=4,CD=5,则四边形ABCD的面积为________ .12.在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________ .13.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是________ .14.利用直尺和圆规作出一个角的角平分线的作法,其理论依据是全等三角形判定方法________ .15.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有________三、解答题(共2题;共20分)16.综合题。
北师大版七年级数学下册《2.4 用尺规作角》教案一. 教材分析《2.4 用尺规作角》这一节主要让学生掌握用尺规作角的方法和技巧。
通过这一节的学习,学生能够了解尺规作角的原理,并能够运用尺规作任意大小的角。
教材通过具体的操作实例,引导学生探究用尺规作角的方法,培养学生的动手能力和观察能力。
二. 学情分析学生在学习这一节之前,已经学习了用直尺和圆规画线段、圆的基本知识。
但是,对于用尺规作角的方法和技巧,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际的操作,掌握用尺规作角的方法。
三. 教学目标1.了解尺规作角的原理,掌握用尺规作角的方法和技巧。
2.能够运用尺规作出任意大小的角。
3.培养学生的动手能力和观察能力。
四. 教学重难点1.尺规作角的原理的理解。
2.用尺规作角的方法和技巧的掌握。
五. 教学方法采用“问题引导法”和“实践操作法”。
通过提出问题,引导学生思考和探究,通过实际操作,让学生掌握用尺规作角的方法。
六. 教学准备1.准备直尺、圆规等作图工具。
2.准备相关的教学PPT或黑板。
七. 教学过程1.导入(5分钟)通过提出问题:“我们如何用直尺和圆规作出一个特定的角呢?”引发学生的思考和兴趣。
2.呈现(10分钟)通过PPT或黑板,呈现尺规作角的原理和步骤。
讲解并演示如何用尺规作角。
3.操练(10分钟)学生分组进行实践操作,尝试用尺规作出不同的角。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)学生汇报自己的操作结果,分享制作过程中的经验和问题。
教师点评并解答学生的疑问。
5.拓展(5分钟)引导学生思考:除了用尺规作角,还有没有其他方法可以作出相同的角?让学生进行思考和讨论。
6.小结(5分钟)教师引导学生总结本节课所学的知识,巩固对尺规作角的理解和掌握。
7.家庭作业(5分钟)布置相关的家庭作业,让学生进一步巩固和运用所学知识。
8.板书(5分钟)教师进行板书设计,总结本节课的主要内容和知识点。
以上是整个教学过程的设计,每个环节的时间安排如上所示。
《2.4 用尺规作角》
1.已知ΔABC,求作一点P,使点P到AB、AC的距离相等,且到边AC的两端点距离相等.
2.如图,AB、AC分别是菱形ABCD的一条边和一条对角线,请用尺规把这个菱形补充完整.
3.如图,河边有一块形似三角形的稻田,现计划从A点引一条直的水渠,并且水渠两边的稻田面积相等,请你用尺规作图的方法在图上画出这条水渠.
4.如图,A、B、C三个小区中间有一块三角形的空地,现计划在这块空地上建一个超市,使得它到三个小区的距离相等,请你用尺规作图的方法确定超市所在位置.
5.如图,107国道OA和320国道OB在湘潭市相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等,且使PC=PD,用尺规作出货站P的位置.
6.如图,A、B是两个蓄水池,都在河流a的同旁,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两池,问该站建在河边哪一点,可使所修的渠道最短,试在图中画
出该点(不写作法,但要保留作图痕迹)。