北师大版-数学-七年级上册-《角》典型例题
- 格式:doc
- 大小:139.50 KB
- 文档页数:5
七年级上册数学 第五章 基本平面图形第二讲 角的认识及多边形和圆的初步认识考点一:角的定义【例题】1、从点O 出发有五条射线,可以组成的角的个数是( )A . 4个 B.5个 C. 7个 D. 10个2、下列说法中,正确的个数有( )①两条射线组成的图形是角;②角的大小与边的长短有关;③角的两边可以画的一样长,也可以一长一短;④角的两边是两条射线;⑤因为平角的两边也成一条直线,所以一条直线可以看作一个平角。
A.2个B.3个C.4个D.5个3、如图所示,射线OP 表示的方向是 .【练习】1、如图,对图中各射线表示的方向下列判断错误的是( ).A .OA 表示北偏东15°B .OB 表示北偏西50°C .OC 表示南偏东45°D .OD 表示西南方向2、如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是 ( )A . 85°B .160°C .125°D .105°3、下列语句正确的说法是( )A .两条直线相交,组成的图形是角B .从同一点引出的两条射线组成的图形也是角A 70° 15° ︶︵C.两条有公共端点的线段组成的图形叫角D.两条射线组成的图形叫角4、下列说法正确的是()A.平角就是一条直线 B.周角就是一条射线C.平角的两条边在同一条直线上 D.周角的终边与始边重合,所以周角的度数是0°5、下列说法中不正确的是()A.由两条射线所组成的圆形叫做角B.∠AOB的顶点是点OC.∠AOB和∠BOA表示同一个角D.角可以看做一条射线绕着端点旋转到另一个位置所形成的图形考点二:角的表示【例题】1、如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()2、如图,∠AOB=90°,以O为顶点的锐角共有个3、已知:如图,在∠AOE的内部从O引出3条射线,求图中共有多少个角?如果引出99条射线,则有多少个角?【练习】1、如图, 一艘客轮沿东北方向OC行驶,在海上O处发现灯塔A在北偏西30°方向上, 灯塔B在南偏东60°方向上.(1)在图中画出射线OA 、OB 、OC ;(2)求∠AOC 与∠BOC 的度数,你发现了什么?2、如图,以B 为顶点的角有几个?把它们表示出来,以D 为顶点的角有几个?把它们表示出来。
七年级上册《基本平面图形》中角以及角的比较测试试题一、选择题。
1、甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是()A、甲说3点时和3点30分B、乙说6点15分和6点45分C、丙说9时整和12时15分D、丁说3时整和9时整2、如图,四条表示方向的射线中,表示北偏东60°的是()A、B、C、D、3、以下给出的四个语句中,结论正确的有()①如果线段AB=BC,则B是线段AC的中点;②线段和射线都可看作直线上的一部分;③大于直角的角是钝角;④如图,∠ABD也可用∠B表示;A、1个B、2个C、3个D、4个4、用一副三角板不能做出下列哪个角?( )A、105°B、75°C、15°D、65°5、如图,下列表示角的方法,错误的是( )A、∠1与∠AOB表示同一个角;B、∠AOC也可用∠O来表示C、图中共有三个角:∠AOB、∠AOC、∠BOC;D、∠β表示的是∠BOC6、一个钝角与一个锐角的差是()A、锐角B、钝角C、直角D、不能确定7、下面表示∠ABC的图是()A、B、C、D、8、已知OA⊥OC,∠AOB:∠AOC=2:3,则∠BOC的度数为()A、30°B、150°C、30°或150°D、以上都不对9、已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=70°,∠BOC=30°,则∠AOC等于()A、40°B、100°C、40°或100°D、30°或120°10、如图,∠AOB=90°,以O为顶点的锐角共有()个A、6B、5C、4D、311、8点30分时,时钟的时针与分针所夹的锐角是()A、70°B、75°C、80°D、60°∠BOC,则∠BOC的度数是()12、如图,∠AOB为平角,且∠AOC=12A、100°B、135°C、120°D、60°13、如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( )A、35°B、70°C、110°D、145°14、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A、50°B、75°C、100°D、120°15、下列说法正确的是()A、两点之间,线段最短B、射线就是直线C、两条射线组成的图形叫做角D、小于平角的角可分为锐角和钝角两类16、有下列说法:①平角是一条直线;②射线是直线的一半;③射线AB与射线BA表示同一条射线;④用一个放大镜去看一个角,这个角的度数也被放大了;⑤两点之间线段最短;⑥120.5°=7250′.其中正确的有( )A、0个B、1个C、2个D、3个二、填空题。
目录1.方向问题 (1)2.销售折扣 (2)4.一元一次方程概念 (4)5.两方程同解 (4)6.相反数、倒数 (4)7.两点之间直线最短 (5)8.方案选择 (6)9.收水费 (8)3.路程问题 (9)10.代数式概念 (10)11.整体带入求值 (10)12.同类项 (10)13.未知数系数为0 (11)14.非负+非负=0 (11)15.从三个方向看图形 (12)( 确定符号 (12)16.0、1 的特殊性,可以用n)117.正负方位 (12)18.产量股票问题 (13)19.找规律 (14)20.图形折叠 (16)21.钟表问题 (16)22.解方程 (16)欧拉公式:顶点数V+面数F-棱数E =21.方向问题1.学校、电影院、公园在平面图上的标点分别是A、B、C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于( )A.115°B.155°C.25°D.65°2.如下图所示,关于图中四条射线的方向说法错误的是A .OA 的方向是北偏东35°B .OB 的方向是北偏西15°C .OC 的方向是南偏西25°D .OD 的方向是东南方向2.销售折扣1.某品牌西装进价为800元,售价为1200元,后由于该西装滞销积压,商家准备打折出售,若保持5%的利润率,则应打A .6折B .7折C .8折D .9折2.某件商品连续两次9折销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.元B.元C.元D.元3.某商品以八折的优惠价出售一件少收入15元,那么购买这件商品的价格是( )A .35元B .60元C .75元D .150元4.文化商场同时卖出两台电子琴,每台均卖960元,以成本计算。
其中一台盈利20%,另一台亏本20%,则这次出售中商场( )A.不赔不赚B.赚160元C.赚80元D.赔80元 5.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A.40%B.20% C25% D.15% 6.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( )A.约700元B.约773元C.约736元D.约865元 7.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为( )(A )1600元 (B )1800元 (C )2000元 (D )2100元8.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为( )。
四川省渠县中学2021-2022学年七年级上学期数学期末专题复习:角度的计算1、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°.求∠AOD的度数.2、如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=42°,∠DOE=36°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=30°,求∠AOC的度数.3、如图,OD平分∠AOB,OE平分∠BOC,∠COD=20°,∠AOB=140°,求∠DOE的度数.4、如图,O为AB上一点,∠BOC=40°,OD平分∠AOC,∠DOE=90°,求∠AOE的度数.5、如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=40°,∠DOE=30°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=35°,求∠AOC的度数.6、如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.7、如图,点O在直线AB上,∠BOD与∠COD互补,∠BOC=3∠EOC.(1)若∠AOD=24°,则∠DOE的度数为.(2)若∠AOD+∠BOE=110°,求∠AOD的度数.8、如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角△MON的直角顶点放在点O处,边OM在射线OB上,另一边ON在直线AB的下方,绕点O逆时针旋转△MON,其中旋转的角度为α(0<α<360°)(1)将图1中的直角△MON旋转至图2的位置,使得ON落在射线OB上,此时α为度.(2)将图1中的直角△MON旋转至图3的位置,使得ON在∠AOC的内部,试探究∠AOM与∠NOC之间满足什么样的等量关系,并说明理由.(3)若直角△MON绕点O按每秒5°的速度顺时针旋转,当直角△MON的直角边ON所在直线恰好平分∠AOC时,求此时直角△MON绕点O的运动时间t的值.9、如图,点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM 在射线OB上方,另一边ON在直线AB的下方.①探究∠AOM和∠CON之间的数量关系,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.10、如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC 的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)11、已知∠AOB=120°,∠COD=40°,OM平分∠AOC,ON平分∠BOD(图中的角均大于0°且小于180°).(1)如图1,求∠MON的度数;(2)若OD与OB重合,OC从图2中的位置出发绕点O逆时针以每秒10°的速度旋转,同时OD从OB的位置出发绕点O顺时针以每秒5°的速度旋转,旋转时间为t秒.①当8<t<24时,试确定∠BOM与∠AON的数量关系;②当0<t<26且t≠时,若|∠MON﹣∠COD|=∠AOB,则t=.12、如图1,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m﹣420|+(2n﹣40)2=0,射线OP从OB处绕点O以4度/秒的速度逆时针旋转.(1)试求∠AOB的度数;(2)如图1,当射线OP从OB处以4度/秒绕点O开始逆时针旋转,同时射线OQ从OA处以1度/秒的速度绕点O顺时针旋转,当他们旋转多少秒时,使得∠POQ=10°?(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射线OE处(OE在∠DOC的内部)时,且=,试求x.13、已知∠AOB=150°,OD为∠AOB内部的一条射线(1)如图(1),若∠BOC=60°,OD为∠AOB内部的一条射线,∠COD=∠BOC,OE平分∠AOB,求∠DOE的度数.(2)如图(2),若OC、OD是∠AOB内部的两条射线,OM、ON分别平分∠AOD,∠BOC,且∠MOC≠∠NOD,求(∠AOC﹣∠BOD)/(∠MOC﹣∠NOD)的值.(3)如图(3),C1为射线OB的反向延长线上一点,将射线OB绕点O顺时针以6°/s的速度旋转,旋转后OB对应射线为OB1,旋转时间为t秒(0<t≤35),OE平分∠AOB,OF为∠C1OB1的三等分线,∠C1OF=∠C1OB1,若|∠C1OF﹣∠1AOE|=30°,直接写出t的值为.14、已知O是直线CD上的一点,∠AOB是直角,直线OA平分∠COE,∠AOB从OB与OD重合时开始绕着O点以每秒15°的速度逆时针旋转,设旋转时间为t 秒.(1)当t=时,∠DOE=∠BOC;(2)若∠AOB绕着点O旋转一周,请探究∠DOE和∠BOE的数量关系,请画出图形,并说明理由;(3)若OF平分∠AOC,若OF与OD的夹角为150°,这时∠BOD的度数.参考答案1、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°.求∠AOD的度数.【解答】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=34°,∴∠EOF=56°,∵OF平分∠AOE,∴∠AOF=∠EOF=56°,∴∠AOC=56°﹣34°=22°,∴∠AOD=180°﹣22°=158°.2、如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=42°,∠DOE=36°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=30°,求∠AOC的度数.【解答】解:(1)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOB=42°,∠DOE=36°,∴∠AOB=∠BOC==42°,∠COD=∠DOE=36°,∴∠BOD=∠BOC+∠DOC=42°+36°=78°;(2)∵∠AOD与∠BOD互补,∠BOC=,∴∠AOD+∠BOD=180°,∴∠AOC+∠COD+∠AOC+∠COD=180°,∵∠DOE=30°,∴∠COD=30°,∴,∴=180°,∴∠AOC=80°.3、如图,OD平分∠AOB,OE平分∠BOC,∠COD=20°,∠AOB=140°,求∠DOE的度数.【解答】解:∵OD平分∠AOB,∠AOB=140°,∴∠AOD=∠AOB=70°,∴∠BOC=∠AOB﹣∠AOD﹣∠COD=50°,∴∠COE=∠BOC=25°,∴∠DOE=∠COD+∠COE=45°.4、如图,O为AB上一点,∠BOC=40°,OD平分∠AOC,∠DOE=90°,求∠AOE的度数.【解答】解:∵O为AB上一点,∠BOC=40°,∴∠AOC=180°﹣40°=140°∵OD平分∠AOC∴∠AOD=∠AOC=70°又∵∠DOE=90°∴∠AOE=20°5、如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=40°,∠DOE=30°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=35°,求∠AOC的度数.【解答】解:(1)∵OB是∠AOC的平分线,OD是∠COE的平分线∴∠COB=∠BOA=40°,∠COD=∠DOE=30°∴∠BOD=∠COD+∠COB=70°;(2)由题意得:∠AOD+∠BOD=180°,∵OD平分∠COE,∠DOE=35°,∴∠COD=∠DOE=35°,设∠AOB=x,则∠AOD=2x+35°,∠BOD=x+35°,∴2x+35°+x+35°=180°,解得:x=,∴∠AOC=2x=.6、如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.7、如图,点O在直线AB上,∠BOD与∠COD互补,∠BOC=3∠EOC.(1)若∠AOD=24°,则∠DOE的度数为68°.(2)若∠AOD+∠BOE=110°,求∠AOD的度数.【解答】解:(1)∠BOD与∠COD互补,∠BOD+∠AOD=180°,∴∠AOD=∠COD=24°,∴∠BOC=180°﹣∠AOD﹣∠COD=180°﹣24°﹣24°=132°,∵∠BOC=3∠EOC.∴∠EOC=132°÷3=44°,∴∠DOE=∠COD+∠COE=24°+44°=68°,故答案为:68°.(2)∵∠AOD+∠BOE=110°,∠AOD+∠BOE+∠DOE=180°,∴∠DOE=180°﹣110°=70°,∵∠BOC=3∠EOC,∠AOD=∠COD,∴∠DOE=70°=∠AOD+(110°﹣∠AOD),解得:∠AOD=30°,8、如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角△MON的直角顶点放在点O处,边OM在射线OB上,另一边ON在直线AB的下方,绕点O逆时针旋转△MON,其中旋转的角度为α(0<α<360°)(1)将图1中的直角△MON旋转至图2的位置,使得ON落在射线OB上,此时α为90 度.(2)将图1中的直角△MON旋转至图3的位置,使得ON在∠AOC的内部,试探究∠AOM与∠NOC之间满足什么样的等量关系,并说明理由.(3)若直角△MON绕点O按每秒5°的速度顺时针旋转,当直角△MON的直角边ON所在直线恰好平分∠AOC时,求此时直角△MON绕点O的运动时间t的值.【解答】解:∵∠AOC:∠BOC=1:3,∠AOC+∠BOC=180°,∴∠AOC=45°,∠BOC=135°(1)由ON落在射线OB上,可知旋转角为:∠NOB=90°;故答案为90.(2)∵∠AOM+∠AON=90°,∠AON+∠NOC=∠AOC=45°,∴∠AOM﹣∠NOC=45°;(3)∵ON所在直线恰好平分∠AOC,∴∠AON=∠AOC÷2=45°÷2=22.5°,此时旋转角为:90°+22.5°=112.5°112.5÷5=22.5(秒),或(112.5+180)÷5=58.5(秒)所以直角△MON绕点O的运动时间是22.5秒或58.5秒.9、如图,点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM 在射线OB上方,另一边ON在直线AB的下方.①探究∠AOM和∠CON之间的数量关系,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.【解答】解:(1)由已知得∠BOM=180°﹣∠AOM=150°,又∵∠MON是直角,OC平分∠BOM,∴∠CON=∠MON﹣∠BOM=90°﹣×150°=15°;(2)设∠AOM=α,则∠BOM=180°﹣α,①∠AOM=2∠CON,理由如下:∵OC平分∠BOM,∴∠MOC=∠BOM=(180°﹣α)=90°﹣a,∵∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣(90°﹣α)=α,∴∠AOM=2∠CON;②由①知∠BON=∠MON﹣∠BOM=90°﹣(180°﹣α)=α﹣90°,∠AOC=∠AOM+∠MOC=α+90°﹣α=90°+α,∵∠AOC=3∠BON,∴90°+α=3(α﹣90°),解得α=144°,∴∠AOM=144°.10、如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC 的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)【解答】解:(1)解:∵∠COE=140°,∴∠COD=180°﹣∠COE=40°,又∵OA平分∠COD,∴∠AOC=∠COD=20°,∵∠AOB=90°,∴∠BOC=90°﹣∠AOC=70°;(2)存在①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2;②当OC平分∠AOD时,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;③当OD平分∠AOC时,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;综上所述:t=2,t=8或32;(3)或或35,理由如下:设运动时间为t,则有①当90+10t=2(40+15t)时,t=②当270﹣10t=2(320﹣15t)时,t=③当OC回到起始位置后,∵OC平分∠BOD,∴∠BOC=∠COD=40°,∴t==35,所以t的值为或或35.11、已知∠AOB=120°,∠COD=40°,OM平分∠AOC,ON平分∠BOD(图中的角均大于0°且小于180°).(1)如图1,求∠MON的度数;(2)若OD与OB重合,OC从图2中的位置出发绕点O逆时针以每秒10°的速度旋转,同时OD从OB的位置出发绕点O顺时针以每秒5°的速度旋转,旋转时间为t秒.①当8<t<24时,试确定∠BOM与∠AON的数量关系;②当0<t<26且t≠时,若|∠MON﹣∠COD|=∠AOB,则t=或12 .【解答】解:(1)∵∠AOB=120°,∠COD=40°,∴∠AOC=120°﹣∠BOC,∠BOD=40°﹣∠BOC,∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC=(120°﹣∠BOC),∠BON=∠BOD=(40°﹣∠BOC)∴∠MON=∠MOC+∠BOC+∠BON=60°+20°=80°;(2)①如图1,则∠AOM=∠AOC=(10t﹣80°)=5t﹣40°,∠BON=∠BOD=5t=t,∴∠BOM=∠AOB+∠AOM=120°+5t﹣40°=5t+80°.当t=20时,∠AOM=5t﹣40°=60°,∠BOM=5t+80°=180°(与题意不符).当8<t<20时,∠BOM=∠AOB+∠AOM=120°+5t﹣40°=5t+80°.∠AON=∠AOB+∠BON=120°+t,∴2∠AON﹣∠BOM=240°+5t﹣5t﹣80°=160°;当20<t<24时,如图2,则∠BOM=360°﹣(∠AOM+∠AOB)=360°﹣(5t﹣40°+120°)=280°﹣5t,∠AON=∠AOB+∠BON=120°+t,∴2∠AON+∠BOM=2(120°+t)+(280°﹣5t)=520°,综上,当8<t<20时,2∠AON﹣∠BOM=160°;当20<t<24时,2∠AON+∠BOM=520°,②若∠COD=180°,则t=s,若∠MON=180°,则t=s,若∠COD=0°,则t==s.当0<t<时,如图3,∠MON=∠AOM+∠BON+∠AOB=∠AOC+∠BOD+∠AOB=(10t﹣80°)+×5t+120°=t+80°,∠COD=10t+40°+5t=15t+40°,∵|∠MON﹣∠COD|=∠AOB,∴|(t+80°)﹣(15t+40°)|=,∴t=,或t=(舍去),当时,如图4,∠MON=∠∠AOC+∠BOD+∠AOB=(10t﹣80°)+×5t+120°=t+80°,∠COD=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t﹣120°=320°﹣15t,∵|∠MON﹣∠COD|=∠AOB,∴|(t+80°)﹣(320°﹣15t)|=,∴t=12,或t=(舍去),当<t≤时,如图5,∠MON=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t ﹣120°=280°﹣t,∠COD=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t﹣120°=320°﹣15t,∵|∠MON﹣∠COD|=∠AOB,∴|(﹣t+280°)﹣(320°﹣15t)|=,∴t=(舍去),或t=(舍去),当<t<26时,∠MON=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t ﹣120°=280°﹣t,∠COD=(10t+40°+5t)﹣360°=15t﹣320°,∵|∠MON﹣∠COD|=∠AOB,∴|280°﹣t﹣(15t﹣320°)|=×120°,∴t=或t=28(舍去).综上,t=或12或.故答案为或12或.12、如图1,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m﹣420|+(2n﹣40)2=0,射线OP从OB处绕点O以4度/秒的速度逆时针旋转.(1)试求∠AOB的度数;(2)如图1,当射线OP从OB处以4度/秒绕点O开始逆时针旋转,同时射线OQ从OA处以1度/秒的速度绕点O顺时针旋转,当他们旋转多少秒时,使得∠POQ=10°?(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射线OE处(OE在∠DOC的内部)时,且=,试求x.【解答】解:(1)∵|3m﹣420|+(2n﹣40)2=0,∴3m﹣420=0且2n﹣40=0,∴m=140,n=20,∴∠AOC=140°,∠BOC=20°,∴∠AOB=∠AOC+∠BOC=160°;(2)设他们旋转x秒时,使得∠POQ=10°.则∠AOQ=x°,∠BOP=4x°.①当射线OP与射线OQ相遇前有:∠AOQ+∠BOP+∠POQ=∠AOB=160°,即:x+4x+10=160,解得:x=30;②当射线OP与射线OQ相遇后有:∠AOQ+∠BOP﹣∠POQ=∠AOB=160°,即:x+4x﹣10=160,解得:x=34.答:当他们旋转30秒或34秒时,使得∠POQ=10°;(3)设t秒后这两条射线重合于射线OE处,则∠BOE=4t°.∵OD为∠AOC的平分线,∴∠COD=∠AOC=70°,∴∠BOD=∠COD+∠BOC=70°+20°=90°.∵,∴∠COE=×90°=40°,∠DOE=30°,∠BOE=20°+40°=60°即:4t=60,∴t=15,∴∠DOE=15x°,即:15x=30解得x=2.13、已知∠AOB=150°,OD为∠AOB内部的一条射线(1)如图(1),若∠BOC=60°,OD为∠AOB内部的一条射线,∠COD=∠BOC,OE平分∠AOB,求∠DOE的度数.(2)如图(2),若OC、OD是∠AOB内部的两条射线,OM、ON分别平分∠AOD,∠BOC,且∠MOC≠∠NOD,求(∠AOC﹣∠BOD)/(∠MOC﹣∠NOD)的值.(3)如图(3),C1为射线OB的反向延长线上一点,将射线OB绕点O顺时针以6°/s的速度旋转,旋转后OB对应射线为OB1,旋转时间为t秒(0<t≤35),OE平分∠AOB,OF为∠C1OB1的三等分线,∠C1OF=∠C1OB1,若|∠C1OF﹣∠1AOE|=30°,直接写出t的值为3秒或15秒.【解答】解(1)分两种情况:①当射线OD在∠BOC的内部时,如图1所示,∵OE平分∠AOB,∴∠BOE=∠AOB,又∠AOB=150°,∴∠BOE=75°,又∵∠COD=∠BOC,且∠BOC=60°,∴∠BOD=∠BOC=×60°=40°,∴∠DOE=∠BOE﹣∠BOD=75°﹣40°=35°;②当射线OD在∠AOC的内部时,如图2所示,同理得:∠BOE=75°,∵∠COD=∠BOC=×60°=20°,∴∠DOE=∠COD+∠BOC﹣∠BOE,=20°+60°﹣75°,=5°,综上所述,∠DOE=35°或5°;(2)∵OM、ON分别平分∠AOD,∠BOC,∴∠MOD=∠AOD,∠CON=∠BOC,又∠MOC=∠MOD﹣∠COD,∠NOD=∠CON﹣∠COD,∴∠MOC﹣∠NOD=(∠MOD﹣∠COD)﹣(∠CON﹣∠COD),=∠AOD﹣∠COD﹣(∠BOC﹣∠COD),=(∠AOD﹣∠BOC),而∠AOD=∠AOC+∠COD,∠BOC=∠BOD+∠COD,∴∠MOC﹣∠NOD=(∠AOC+∠COD﹣∠BOD﹣COD),=(∠AOC﹣∠BOD),∴(∠AOC﹣∠BOD)/(∠MOC﹣∠NOD)==2;(3)①当∠BOB1≤30°时,∵∠BOB1=6t,∴∠AOB1=150°+6t,∵OE平分∠AOB1,∴∠AOE=AOB1=(150°+6t)=75°+3t,∵∠C1OB1=360°﹣∠C1OB1=180°﹣6t,∵∠C1OF=∠C1OB1,∴∠C1OF=60°﹣2t,∵|∠C1OF﹣∠AOE|=30°,∴75°+3t﹣60°+2t=30°或60°﹣2t﹣75°﹣3t=30°,∴t=3或﹣9(舍弃)②当∠BOB1>30°时,同理t=15故答案为:3秒或15秒.14、已知O是直线CD上的一点,∠AOB是直角,直线OA平分∠COE,∠AOB从OB与OD重合时开始绕着O点以每秒15°的速度逆时针旋转,设旋转时间为t 秒.(1)当t= 4 时,∠DOE=∠BOC;(2)若∠AOB绕着点O旋转一周,请探究∠DOE和∠BOE的数量关系,请画出图形,并说明理由;(3)若OF平分∠AOC,若OF与OD的夹角为150°,这时∠BOD的度数.【解答】解:(1)∵∠AOB从OB与OD重合时开始绕着O点以每秒15°的速度逆时针旋转t秒,∴∠BOD=15°t,∵∠AOB是直角,∴∠AOB=90°,∴∠AOC=90°﹣15°t,∵OA平分∠COE,∴∠AOE=∠AOC=90°﹣15°t,∴∠BOE=15°t,∵∠DOE=∠BOC,∴∠BOD+∠BOE=∠AOB+∠AOC,∴15°t+15°t=90°+90°﹣15°t,解得:t=4.故答案为:4.(2)分四种情形:①当0≤t≤6时,如图,2,∵∠AOB=90°,直线OA平分∠COE,∴∠AOE=∠AOC,∠AOC+∠BOD=90°,∵∠AOE+∠BOE=90°,∴∠BOD=∠BOE,∴∠DOE=2∠BOE.②当6<t≤12时,如图3,∠AOC=15°t﹣90°,∵∠AOB=90°,直线OA平分∠COE,∴∠AOE=∠AOC=15°t﹣90°,∴∠BOE=∠AOB+∠AOE=15°t,∠DOE=180°﹣∠COE=180°﹣2∠AOC=360°﹣30°t,∴∠DOE+2∠BOE=360°.③当12<t≤18时,如图4,∠AOC=15°t﹣90°,∴∠A′OC=180°﹣∠AOC=270°﹣15°t,∵∠AOB=90°,直线OA平分∠COE,∴∠A′OE=∠A′OC=270°﹣15°t,∠DOE=180°﹣∠A′OC=30°t﹣360°,∠BOE=∠A′OB+∠A′OE=360°﹣15°t,∴∠DOE+2∠BOE=360°.④当18<t≤24时,如图5,由题意得:∠DOB=360°﹣15°t,∠AOB=90°,∴∠A′OC=∠AOD=15°t﹣270°,∠BOC=180°﹣∠DOB=15°t﹣180°∵直线OA平分∠COE,∴∠COE=2∠A′OC=30°t﹣540°,∴∠DOE=180°﹣∠COE=720°﹣30°t,∠BOE=∠BOC﹣∠COE=360°﹣15°t,∴∠DOE=2∠BOE.综上所述,当0≤t≤6时,∠DOE=2∠BOE;当6<t≤18时,∠DOE+2∠BOE =360°;当18<t≤24时,∠DOE=2∠BOE.(3)当OF在CD上方时,如图6,∠DOF=150°,∴∠FOC=30°,∵OF平分∠AOC,∴∠AOC=2∠FOC=60°,∴∠BOD=180°﹣∠AOC﹣∠AOB=30°;当OF在CD下方时,如图7,∠DOF=150°,∴∠FOC=30°,∵OF平分∠AOC,∴∠AOC=2∠FOC=60°,∵∠AOB=90°,∴∠BOC=∠AOB﹣∠AOC=30°,∴∠BOD=180°﹣∠BOC=150°.综上所述,∠BOD=30°或150°.。
《角》典型例题例1 指出下面角的表示方法是否正确,错误的改正过来。
(1)如图①中的角可以表示为ABC∠;(2)如图②中的BAC∠可以表示为A∠。
例2 如图,用量角器度量三角形的三个角,并指出哪个角是钝角。
例3 计算:(1)0.12°=()′ (2)24′36″=()°例4如图,在海岸上有A、B两个观测站,B观测站与A观测站的距离是2.5km,某天,A观测站观测到有一条船在南偏东50°方向,在同一时刻,B观测站观测到该船在南偏东74°方向.(1)请根据以上情况画出船的位置.(2)计算船到B观测站的距离(画图时用1cm表示1km)例5 如图:(1)以B为顶点的角有几个:把它们表示出来;(2)指出以射线BA为边的角;(3)以D为顶点,DC为一边的角有几个?分别表示出来。
例6 填空题(1);______638128︒='''︒(2)=''0451 '''︒;(3)=︒26.78 '''︒;(4)︒120=________平角=_______周角。
例7 求时钟表面3点25分时,时针与分针所夹角的度数.参考答案例1 分析 (1)中角顶点的字母没有写在中间,(2)中用A ∠表示,就很难分清是表示三个角中的哪个角。
解 (1)错,应表示为BAC ∠;(2)错,它能用BAC ∠或α∠表示。
说明:(1)表示角时顶点字母必须写在中间;(2)用顶点一个字母去表示角时,必须分清楚表示的是哪个角。
例 2 分析 度量时应注意把量角器中角的顶点和所要度量的角的顶点重合,把量角器的“0”点落在被量角的一边上,使被量角的另一边和量角器都在被量角这一边的同侧,这时被量角的另一边所对的刻度就是这个角的度数。
解 经度量︒=∠140A 是钝角;︒=∠︒=∠15,25C B 。
说明:学生所用的一般量角器只精确到度,有时要根据观察来确定角的近似值。
北师大版七年级数学上册第四章《4.角的比较》综合练习题(含答案)一、单选题1.若12018'∠=︒,22015'30''∠=︒,320.25∠=︒,则( )A .123∠>∠>∠B .213∠>∠>∠C .132∠>∠>∠D .312∠>∠>∠2.把10°36″用度表示为( )A .10.6°B .10.001°C .10.01°D .10.1° 3.已知α∠与∠β都小于平角,在平面内把这两个角的一条边重合,若α∠的另一条边恰好落在∠β的内部,则().A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .不能比较α∠与∠β的大小4.下列度分秒运算中,正确的是( )A .48°39′+67°31′=115°10′B .90°﹣70°39′=20°21′C .21°17′×5=185°5′D .180°÷7=25°43′(精确到分) 5.计算:135333030306︒︒''''⨯-÷的值为( )A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒''' 6.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB =12∠MFE .则∠E FM 的度数为( )A .30°B .36°C .45°D .72° 7.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( )A .2.5B .30C .2.5或30D .2.5或32.58.已知∠AOB=30°,∠BOC=45°,则∠AOC 等于( )A .15°B .75°C .15°或75°D .不能确定二、填空题9.55.66=____度____分____秒;433224'''=______度.10.单位换算:56°10′48″=_____°.11.12.3°=________°______′;1530'︒=_________°.12.如图,将一块三角板的直角顶点放在直尺的一边上,当237∠=︒时,1∠= _________.13.如图,已知点O 在直线AB 上,OC ⊥OD ,∠BOD :∠AOC =3:2,那么∠BOD =___度.14.把一副三角尺按如图所示拼在一起,如图,其中B ,C ,D 三点在同一条直线上,∠ACB =45°,∠DCE =60°.(1)若CM 和CN 分别平分∠ACB 和∠DCE ,如图1,则∠MCN 的度数为___________;(2)若CM 平分∠BCE ,CN 平分∠DCA ,如图2,则∠MCN 的度数为___________.三、解答题15.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.16.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.17.如图,将一副三角板放到一起可以擦除怎样的数学火花呢?福山区某学校两个数学兴趣小组对一副三角板进行了以下两种方式的摆放组合.已知一副三角板重合的顶点记为点O,作射线OE平分∠AOC,射线OF平分∠BOD,来研究一下45°三角板不动,30°三角板绕重合的顶点O旋转时,∠EOF的度数如何变化.【A组研究】在同一平面内,将这副三角板的的两个锐角顶点重合(图中点O),此时∠AOB=45°,∠COD=30°将三角板OCD绕点O转动.(1)如图①,当射线OB与OC重合时,则∠EOF的度数为___________;∠=,∠EOF的度数是否发生变化?(2)如图②,将∠COD绕着点O顺时针旋转,设BOCα如果不变,请根据图②求出∠EOF的度数;如果变化,请简单说明理由.【B组研究】在同一平面内,将这副直角三角板中的一个直角顶点和一个锐角顶点重合(图中点O),此时∠AOB=90°,∠COD=30°,将三角板OCD绕点O转动.(3)如图③,当三角板OCD摆放在三角板AOB内部时,则∠EOF的度数为___________;(4)如图④,当三角板OCD转动到三角板AOB外部,设∠BOC=β,∠EOF的度数是否发生变化?如果不变,请根据图④求出∠EOF的度数;如果变化,请简单说明理由.18.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P在直线l上,射线PR,PS,PT位于直线l同侧,若PS平分∠RPT,则有∠RPT=2∠RPS,所以我们称射线PR是射线PS,PT的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数.19.已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ=;②当α=80°时,如图2,求∠POQ的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ=,(请用含m、n的代数式表示).20.已知120AOB ∠=︒,OC 、OD 是过点O 的射线,射线OM 、ON 分别平分∠AOC 和∠DOB .(1)如图①,若OC 、OD 是∠AOB 的三等分线,则MON ∠=______°(2)如图②,若40COD ∠=︒,AOC DOB ∠≠∠,则MON ∠=______°(3)如图③,在∠AOB 内,若()060COD αα∠=︒<<︒,则MON ∠=______°(4)将(3)中的∠COD 绕着点O 逆时针旋转到∠AOB 的外部(0180AOC <∠<︒,0180BOD <∠<︒),求此时∠MON 的度数。
关于角的计算题
1.如图,已知∠AOB=120°,OC是∠AOB的一条角平分线,OD是∠BOC的平分线,求∠AOD的度数。
2.如图,已知O是直线AB上的点,OD是∠AOC的平分线,OE是∠COB的平分线,求∠DOE的度数。
3.如图,已知∠AOC=∠BOD=78°,∠BOC=35°,求∠AOD。
4.如图,已知∠AOB=150°,∠AOC=∠BOD=90°,求∠COD的度数。
5.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,
求∠BOD 的度数。
6.如图,OA⊥BC 于O ,OA 平分∠DOE ,∠COE =80°,求∠AOD 的度数。
7.如图,已知∠1=24°40′,OD 平分∠BOC ,求∠AOD 的度数。
8.如图,已知直线AB 、CD 相交于O ,OA 平分∠EOC ,∠EOC=70°,求∠BOE 的度数。
A B C D E
O
9.(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数。
(2)如果(1)中的∠AOB=α,其他条件不变,求∠MON的度数。
(3)如果(1)中∠BOC= β(β为锐角),其他条件不变,求∠MON的度数。
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习角(提高)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1. 角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O ,边是射线OA 、OB .(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA 绕它的端点O 旋转到OB 的位置时,形成的图形叫做角,起始位置OA 是角的始边,终止位置OB 是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB 和OA 重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:图1 图2要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】(2015春•成武县期末)下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4.(2016春•龙口市期中)如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM﹣∠CON=45°.(4)从上面的结果中,发现:∠MON的大小只和∠AOB得大小有关,与∠A0C的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O是直线AC上一点,OD平分∠AOB,OE在∠BOC内,且∠BOE=12∠EOC,∠DOE=70°,求∠EOC的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得: 1180127022x x x --+= , 解得: 80x = .∠EOC =2∠BOE =80°.类型四、方位角5.(2015•浦东新区三模)已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 .【答案】85°.【解析】解:如图:∵∠2=50°,∴∠3=40°,∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°,故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键.类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线?【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线. 【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则:① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍.举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间?【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得: 6x-0.5x =110×2,解之得x =40.答:此人外出购物用了40分钟的时间.。
《角》教学教案课题 4.3 角单元第四单元学科数学年级七学习目标1.通过实际情境,理解角的有关概念,掌握角的表示方法.2.会进行角的度量,以及度、分、秒的互化.3.进一步认识平角、周角及其大小关系.4. 通过问题情境,认识角、表示角、度量角、进行角的互化,经历角的静态定义到动态定义的形成过程,体会运动变化的思想方法.发展学生的符号感和数感.重点理解角的概念,掌握角的表示方法。
难点掌握角的表示方法及度、分、秒的换算。
教学过程教学环节教师活动学生活动设计意图导入新课1、教师出示课件:教师以古诗《小池》为情境引入:思考:生活中的角?通过解决问题,引入本课:角。
学生观看图、古诗,思考有关生活中的角有关的数学知识,从而引入角的概念。
教师以生活中的角为载体,让学生感知生活中的情境,激发学生的学习热情,从而自然引入新课.讲授新课2、出示课件做一做:教师引导学生探索角的定义:1.角的定义:有公共端点的两条射线组成的图形叫做角两条射线的公共端点是这个角的顶点两条射线是这个角的两条边.2.如何表示角:记作:∠AOB或∠BOA.记作:∠α.让学生自己通过观察,计算,探索、分析、交流、辩证、归纳,然后老师讲解,师生交流,总结出角的概念.1.通过学生的观察、对比、分析和讨论,发现角的共同特征并在此基础上归纳角的定义,从而培养学生的观察力和运用数学语言的表述能力.2.培养学生创新精神及自己发现记作:∠O.记作:∠1.师生总结:角的表示方法做一做:(1)用适当的方式分别表示中的每个角.(2)在图中,∠ B AC,∠ C AD 和∠ B AD 能用∠A来表示吗?解:(1)∠BAC,∠CAD 和∠BAD(2)∠BAC,∠CAD 和∠BAD不能用∠A来表示。
因为顶点A不是一个角的顶点。
1平角=180°,1周角=360°试一试:下列关于平角、周角的说法正确的是( C)A.平角是一条直线 B.周角是一条射线C.反向延长射线OA,就形成一个平角D.两个锐角的和不一定小于平角鼓励学生积极思考,自主解决问题,小组交流,总结发言,大胆提出自己的观点。
北师大版七年级上册动角问题应用题
动角问题是一个经典的数学问题,通常涉及到角度的变化和相关的几何图形。
以下是几个北师大版七年级上册动角问题的应用题示例,这些题目将帮助你理解和解决这类问题。
示例1:时钟指针问题
1. 一个钟表的分针匀速旋转,经过15分钟旋转了多少度?
2. 如果分针在30分钟内转过90度,那么它转过180度需要多少时间?
示例2:角度变化问题
1. 一个三角形的一个内角为60度,这个角按逆时针方向每分钟旋转1度,那么经过多少分钟这个内角会变成30度?
2. 一个等腰三角形的顶角和一个底角的角度比是3:2,这个三角形的顶角是多少度?
示例3:角的比较与计算
1. 两个角的比是1:3,它们的差是90度,较大的角是多少度?
2. 两个角的比是3:4,它们的和是180度,较大的角是多少度?
示例4:多边形内角和问题
1. 一个n边形的内角和是多少度?
2. 一个n边形的外角和是多少度?
示例5:角度与方位问题
1. 在一个方位标尺上,北方的角度是0度,东方的角度是90度。
请问南方的角度是多少度?西方的角度是多少度?
2. 一个方位标尺上,北方的角度是0度,东方的角度是90度。
如果一个物体从北方移动到东方,它转过了多少度?
示例6:角度与图形变换问题
1. 一个正方形绕其中心旋转一定的角度后与原图重合,这个旋转的角度至少是多少度?
2. 一个正方形顺时针旋转90度后与原图重合,那么逆时针旋转多少度也能与原图重合?。
4.3 角同步练习一.选择题1.如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处.则∠ABC等于()A.130°B.120°C.110°D.100°2.小明从A处出发沿正东方向行驶至B处,又沿南偏东75°方向行驶至C处,此时需把方向调整到正东方向,则小明应该()A.右转165°B.左转75°C.右转15°D.左转15°3.张燕同学按如图所示方法用量角器测量∠AOB的大小,她发现OB边恰好经过80°的刻度线末端.你认为∠AOB的大小应该为()A.80°B.40°C.100°D.50°4.钟表上8点30分时,时针与分针的夹角为()A.15°B.30°C.75°D.60°5.射线OA,OB,OC,OD的位置如图所示,可以读出∠COB的度数为()A.50°B.40°C.70°D.90°6.如图所示,下列说法错误的是()A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示7.如图所示,下列表示角的方法错误的是()A.∠1与∠PON表示同一个角B.∠α表示的是∠MOPC.∠MON也可用∠O表示D.图中共有三个角∠MON,∠POM,∠PON8.下列四个图形中的∠1也可用∠AOB,∠O表示的是()A.B.C.D.9.如图,∠AOB=148°,在灯塔O处观测到轮船A位于北偏西51°的方向,则在灯塔O 处观测轮船B的方向为()A.南偏东17°B.南偏东19°C.东偏南17°D.东偏南73°10.嘉淇乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(最小圆的半径是1km),下列关于小艇A,B的位置描述,正确的是()A.小艇A在游船的北偏东60°方向上,且与游船的距离是3kmB.游船在小艇A的南偏西60°方向上,且与小艇A的距离是3kmC.小艇B在游船的北偏西30°方向上;且与游船的距离是2kmD.游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km二.填空题11.已知如图,点A在点O的东南方向,则∠AOB=°.12.时钟上八点二十的时候,时针与分针所夹锐角的度数是.13.如图,在一笔直的海岸线上有A、B两个观测站,A在B的正西方向,从A测得船C在北偏东52°的方向,从B测得船C在北偏西30°的方向,则∠ACB=°.14.如图,O是直线AB上的一点,∠AOC=26°17,则∠COB=15.小红从O点出发向北偏西32°方向走到A点,小明从O点出发向南偏西54°方向走到B点,则∠AOB的度数是.三.解答题16.如图(1)利用尺规作∠CED,使得∠CED=∠A.(不写作法,保留作图痕迹).(2)判断直线DE与AB的位置关系:.17.如图,货轮O在航行过程中,发现灯塔A在它北偏东60°的方向上,同时,在它南偏西20°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C,仿照表示灯塔方位的方法,画出表示客轮B和海岛C方向的射线.18.如图,一艘轮船按箭头所示方向行驶,C处有一灯塔,点A表示轮船的初始位置,点B 表示轮船行进中某一时刻的位置.(1)当轮船从A点行驶到B点时,请根据图中所标数据求∠ACB的大小;(2)当轮船从点行驶到距离灯塔最近点时,∠ACB=.参考答案1.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°.故选:C.2.解:由题意得:∠BEC=75°,∵AB∥CD,∴∠DCF=75°,∵需把方向调整到正东方向,∴∠FCD=15°,∴左转15°,故选:D.3.解:如图,由图可知,∠ACD=100°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠AOB=.故选:D.4.解:∵8点30分,时针在8和9正中间,分针指向6,中间相差两个半大格,而钟表12个数字,每相邻两个数字之间的夹角为30°,∴8点30分时,时针与分针的夹角的度数为:30°×2.5=75°.故选:C.5.解:∠COB=∠AOC﹣∠AOB=140°﹣50°=90°,故选:D.6.解:A、∠DAO可用∠DAC表示,本选项说法正确;B、∠COB不能用∠O表示,本选项说法错误;C、∠2也可用∠OBC表示,本选项说法正确;D、∠CDB也可用∠1表示,本选项说法正确;故选:B.7.解:A、∠1与∠PON表示同一个角是正确的,不符合题意;B、∠α表示的是∠MOP是正确的,不符合题意;C、∠MON不能用∠O表示,原来的说法错误,符合题意;D、图中共有三个角∠MON,∠POM,∠PON是正确的,不符合题意.故选:C.8.解:A、图形中的∠1可用∠AOB,但不能用∠O表示,故此选项错误;B、图形中的∠1可用∠AOB,也可用∠O表示,故此选项正确;C、图形中的∠1不可用∠AOB和∠O表示,故此选项错误;D、图形中的∠1可用∠AOB,但不能用∠O表示,故此选项错误;故选:B.9.解:如图,∠1=∠AOB﹣90°﹣(90°﹣51°)=148°﹣90°﹣(90°﹣51°)=19°.故在灯塔O处观测轮船B的方向为南偏东19°,故选:B.10.解:A、小艇A在游船的北偏东30°,且距游船3km,故本选项不符合题意;B、游船在小艇A的南偏西30°方向上,且与小艇A的距离是3km,故本选项不符合题意;C、小艇B在游船的北偏西60°,且距游船2km,故本选项不符合题意;D、游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km,故本选项符合题意.故选:D.11.解:如图所示:∵点A在点O的东南方向,∴∠COA=45°,则∠AOB=90°+45°=135°.故答案为:135.12.解:4×30°+20×0.5°=120°+10°=130°.故答案为:130°.13.解:∵∠CAB=90°﹣52°=38°,∠CBA=90°﹣30°=60°,∴∠ACB=180°﹣38°﹣60°=82°.故答案为:82.14.解:∵∠AOC+∠BOC=180°,∴∠COB=180°﹣∠AOC=180°﹣26°17′=153°43′故答案为:153°43′.15.解:根据题意得:∠AOB=180°﹣32°﹣54°=94°.故答案为:94°.16.解:(1)如图1,如图2;(2)如图1,∵∠CED=∠A,∴DE∥AB,;如图2,DE与AB相交.故答案为平行或相交.17.解:如图所示,18.解:(1)如图所示,过点C作CE⊥AB,交AB延长线于点E,则轮船行驶到点C时距离灯塔最近;当轮船从A点行驶到B点时,∠ACB的度数是72°﹣29°=43°;(2)当轮船行驶到距离灯塔的最近点时,即∠ACB=∠ACE=61°.故答案为:61°.。
《角》典型例题
例1 指出下面角的表示方法是否正确,错误的改正过来。
(1)如图①中的角可以表示为ABC ∠;
(2)如图②中的BAC ∠可以表示为A ∠。
例2 如图,用量角器度量三角形的三个角,并指出哪个角是钝角。
例3 计算:(1)0.12°=( )′ (2)24′36″=( )°
例4 如图,在海岸上有A 、B 两个观测站,B 观测站与A 观测站的距离是2.5km ,某天,A 观测站观测到有一条船在南偏东50°方向,在同一时刻,B 观测站观测到该船在南偏东74°方向.
(1)请根据以上情况画出船的位置. (2)计算船到B 观测站的距离(画图时用1cm 表示1km )
例5 如图:
(1)以B 为顶点的角有几个:把它们表示出来;
(2)指出以射线BA 为边的角;
(3)以D 为顶点,DC 为一边的角有几个?分别表示出来。
例6 填空题
(1);______638128︒='''︒
(2)=''0451 '''︒;
(3)=︒26.78 '''︒;
(4)︒120=________平角=_______周角。
例7 求时钟表面3点25分时,时针与分针所夹角的度数.
参考答案
例1 分析 (1)中角顶点的字母没有写在中间,(2)中用A ∠表示,就很难分清是表示三个角中的哪个角。
解 (1)错,应表示为BAC ∠;(2)错,它能用BAC ∠或α∠表示。
说明:(1)表示角时顶点字母必须写在中间;(2)用顶点一个字母去表示角时,必须分清楚表示的是哪个角。
例2 分析 度量时应注意把量角器中角的顶点和所要度量的角的顶点重合,把量角器的“0”点落在被量角的一边上,使被量角的另一边和量角器都在被量角这一边的同侧,这时被量角的另一边所对的刻度就是这个角的度数。
解 经度量︒=∠140A 是钝角;︒=∠︒=∠15,25C B 。
说明:学生所用的一般量角器只精确到度,有时要根据观察来确定角的近似值。
例3 分析 因为,度、分、秒之间的进率是60,所以(1)只需把0.12°乘以60就得到分;(2)则需先将秒变成分,再将分变成度,需要两次除以60。
解 (1)0.12°=(7.2)′ (2)24′36″=(0.41)°
说明:不要出现下面类似的错误:0.12°=1.2′。
例4 分析 (1)根据有关概念,准确地画出图形是解决本题的关键,以从表示A 观测站的点向正下方的射线为角的始边,画出A 观测站观测船的视线,类似地画出B 观测站观测船的视线.
所画两条射线的交点就是船的位置.
(2)设船的位置为点C ,量出线段BC 的长是多少厘米,那么船C 到观测站的距离就是多少km .
解 (1)
C 点即船的位置.
(2)3=BC cm ,所以船到B 观测站的距离约为3km .
说明 (1)画图的准确性,对这道题显得格外重要.其实,准确的图形对解决许许多多问题都是非常重要的.“身在帷幄,决胜千里”恐怕少不了绘制准确的地图.
(2)本例题涉及的测量办法,具有比较广泛的应用价值,主要是测量与不能直接到达的目标间的距离.
(3)不要把有关角度说成“东偏北××度”或“西偏南××度”等.
例5 解:(l )以B 为顶点的角有3个,分别是ABD ∠、ABC ∠、DBC ∠。
(2)以射线BA 为边的角有2个,分别是ABD ∠和ABC ∠。
(3)以D 为顶点,DC 为一边的角有2个,分别是BDC ∠和CDE ∠。
说明:(1)以D 为顶点的角在图形中只有4个,因为除非特别注明,所说的角都是指小于平角的角。
再加上右边DC 的限制,所以以D 为顶点,DC 为一边的角只有两个角。
例6 解:(1)∵6.03606163'⨯'
''==, ︒⨯︒
'31.06.186016.18==
∴︒'''︒31.28638128= (2)∵,=01570451''''' 51157'︒'=,
∴015110451'''︒''=。
(3)∵6.1526.00626.0'⨯'︒==
636.0066.0''⨯'''==,
∴63517826.78'''︒︒=;
(4).3
132120周角平角==︒
说明:(1)要熟记度、分、秒的换算:0360061''='=︒(六十进制);
(2)进行单位互化时,要认真读题,弄清要求。
例7 分析 本题考查角的度量的实际应用,关键是明确分针1分钟转6°,时针1分钟转0.5°,并且要注意到分针在运动时,时针也在动,而不能认为时针静止.
解法1 从3点整开始,分针转过了︒=⨯︒150256,时针转过了︒=⨯︒5.12255.0. 而3点整时两针夹角为90°,所以3点25分时两针夹角为150°-90°-12.5°=47.5°.
解法2 3点25分时,分针在钟面“5”字上,时针从“3”转过了0.5°×25=12.5°. 又“3”“5”之间夹角为60°,故3点25分两针夹角为60°-12.5°=47.5°.
解法3 设所求夹角度数为︒x ,将分针视作追赶并超过时针,它们的速度分别为60°/
分和0.5°/分,则可列方程x +=⨯-9025)5.06(.解得︒=5.47x .。